Spreadsheet Link™ EX
User's Guide

MATLAB

<} MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Spreadsheet Link™ EX User’s Guide
© COPYRIGHT 1996-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 1996

May 1997
January 1999
September 2000
April 2001

July 2002
September 2003
June 2004
September 2005
March 2006
September 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Sixth printing
Online only
Online only
Online only
Online only
Online only
Seventh printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Revised for Version 1.0.3

Revised for Version 1.0.8 (Release 11)
Revised for Version 1.1.2

Revised for Version 1.1.3

Revised for Version 2.0 (Release 13)
Revised for Version 2.1 (Release 13SP1)
Revised for Version 2.2 (Release 14)
Revised for Version 2.3 (Release 14SP3)
Revised for Version 2.3.1 (Release 2006a)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.0.1 (Release 2008a)
Revised for Version 3.0.2 (Release 2008b)
Revised for Version 3.0.3 (Release 2009a)
Revised for Version 3.1 (Release 2009b)
Revised for Version 3.1.1 (Release 2010a)
Revised for Version 3.1.2 (Release 2010b)
Revised for Version 3.1.3 (Release 2011a)
Revised for Version 3.1.4 (Release 2011b)
Revised for Version 3.1.5 (Release 2012a)
Revised for Version 3.1.6 (Release 2012b)
Revised for Version 3.1.7 (Release 2013a)

Getting Started

Product Description 1-2
Key Features 1-2
Microsoft Excel and MATLAB Interaction 1-3
Installation 1-5
Product Installation 1-5
Files and Folders Created by the Installation 1-5
Modify Your System Path 1-6
After You Upgrade the Spreadsheet Link EX Software ... 1-6
Add-in Setup i e 1-8
Configure Microsoft Excel 2003 and Earlier Versions 1-8
Configure Microsoft Excel 2007 and 2010 1-9
Work with the Microsoft Visual Basic Editor 1-13
Customizationc. 0t iiiiiinininnnennn. 1-14
Set Spreadsheet Link EX Preferences 1-14
Use Particular Versions of MATLAB 1-15
Startup and Shutdown 1-16
Start Spreadsheet Link EX Automatically 1-16
Start Spreadsheet Link EX Manually 1-16
Connect to Already Running MATLAB Session 1-16
Stop Spreadsheet Link EX 1-18
MATLAB Functions in Microsoft Excel 1-19
Spreadsheet Link EX and Microsoft Excel Functions 1-19
Types of Spreadsheet Link EX Functions 1-19
Use Worksheets i, 1-20
Work with Argumentsccoiiieennne... 1-22
Use MATLAB Function Wizard 1-24

Use Spreadsheet Link EX Functions in Macros 1-29

vi

Contents

Work withDates 1-33

Localization Information 1-34

Solving Problems with the Spreadsheet Link
EX Software

2

Model Data Using Regression and Curve Fitting 2-2
Using Worksheets i, 2-2
UsSiNg Macros .. vvviiiiit it e et e e e e 2-6

Interpolate Data, 2-11

Price Stock Options Using the Binomial Model 2-15

Compute Efficient Frontier of Financial Portfolios ... 2-19

Map Time and Bond Cash Flows 2-24

Error Messages and Troubleshooting

3

Worksheet Cell Errors 3-2
Microsoft Excel Exrors, 3-5
Data Errors e 3-8
Matrix Data Errors 0 3-8
Errors When Opening Saved Worksheets 3-8
License Errors0 3-10

Startup Errors

Audible Error Signals 3-12

Functions — Alphabetical List

4

Index

vii

Contents

o
ol

Getting Started

¢ “Product Description” on page 1-2

® “Microsoft® Excel® and MATLAB Interaction” on page 1-3
¢ “Installation” on page 1-5

e “Add-in Setup” on page 1-8

¢ “Customization” on page 1-14

e “Startup and Shutdown” on page 1-16

e “MATLAB Functions in Microsoft® Excel®” on page 1-19
e “Work with Dates” on page 1-33

e “Localization Information” on page 1-34

1 Getting Started

1-2

Product Description
Use MATLAB® from Microsoft® Excel®

Spreadsheet Link™ EX connects Excel spreadsheet software with the
MATLAB workspace, enabling you to access the MATLAB environment
from an Excel spreadsheet. With Spreadsheet Link EX software, you can
exchange data between MATLAB and Excel, taking advantage of the familiar
Excel interface while accessing the computational speed and visualization
capabilities of MATLAB.

Key Features

Data preprocessing, editing, and viewing in the familiar Excel environment

Sophisticated analysis of Excel data using MATLAB and application
toolboxes

Delivery of Excel based applications, using MATLAB as a computational
and graphics engine and Excel as an interface

Interactive selection of available functions using the MATLAB Function
Wizard

Visual interface for customization of all Spreadsheet Link EX preferences

Microsoft® Excel® and MATLAB® Interaction

Microsoft Excel and MATLAB Interaction

Spreadsheet Link EX Add-In integrates the Microsoft Excel and MATLAB
products in a computing environment running Microsoft Windows®. It
connects the Excel interface to the MATLAB workspace, enabling you to use
Excel worksheet and macro programming tools to leverage the numerical,
computational, and graphical power of MATLAB.

You can use Spreadsheet Link EX functions in an Excel worksheet or macro
to exchange and synchronize data between Excel and MATLAB, without
leaving the Excel environment. With a small number of functions to manage
the link and manipulate data, the Spreadsheet Link EX software is powerful
in its simplicity.

Note This documentation uses the terms worksheet and spreadsheet
interchangeably.

The Spreadsheet Link EX software supports MATLAB two-dimensional
numeric arrays, one-dimensional character arrays (strings), and
two-dimensional cell arrays. It does not work with MATLAB
multidimensional arrays and structures.

1 Getting Started

1-4

Microsoft Excel

MATLAB

>

Excel workspace [«

| Macro | | Worksheet |

Spreadsheet
Link EX

MATLAB workspace

Ir

Handle H
Graphics

Simulink

MATLAB
Toolboxes| |Compiler

Installation

Installation

In this section...

“Product Installation” on page 1-5

“Files and Folders Created by the Installation” on page 1-5

“Modify Your System Path” on page 1-6

“After You Upgrade the Spreadsheet Link EX Software” on page 1-6

Product Installation

Install the Microsoft Excel product before you install the MATLAB and
Spreadsheet Link EX software. To install the Spreadsheet Link EX Add-In,
follow the instructions in the MATLAB installation documentation. Select the
Spreadsheet Link EX check box when choosing components to install.

Note If you have several versions of MATLAB installed on your computer,
Spreadsheet Link EX software uses the version that you registered last.

Files and Folders Created by the Installation

Note Throughout this document the notation matlabroot is the MATLAB
root folder, the folder where the MATLAB software is installed on your system.

The Spreadsheet Link EX installation program creates a subfolder under
matlabroot\toolbox\. The exlink folder contains the following files:

e excllink.xla: The Spreadsheet Link EX Add-In for Microsoft Excel 2003
and earlier versions

® excllink2007.xlam: The Spreadsheet Link EX Add-In for Microsoft Excel
2007 or 2010

® ExliSamp.xls: Spreadsheet Link EX example files described in this
documentation

1-5

1 Getting Started

1-6

The Spreadsheet Link EX software uses Kernel32.d11, which should
already be in the appropriate Windows system folder (for example,
C:\Winnt\system32). If not, consult your system administrator.

Modify Your System Path

Add matlabroot\bin to your system path. For more information about
editing your system path, consult your Windows documentation or your
system administrator.

After You Upgrade the Spreadsheet Link EX Software

If MATLAB and Spreadsheet Link EX are installed on your computer, to
upgrade to a newer version:

1 Install the new version of MATLAB and the Spreadsheet Link EX software.
2 Start MATLAB and a Microsoft Excel session.
3 Configure the Spreadsheet Link EX software.

4 If you have existing workbooks with macros that use the Spreadsheet Link
EX software, update the references to the Spreadsheet Link EX software in
each workbook.

To update the references in an existing workbook in Microsoft Excel 2003 or
earlier versions:

1 In a Microsoft Excel session, open the Visual Basic® Editor window by
selecting Tools > Macros > Visual Basic Editor.

2 In the left pane, select a module for which you want to update a reference.
3 From the main menu, select Tools > References.
4 In the References dialog box, select the SpreadsheetLinkEX check box.

5 Click OK.

To update the references in an existing workbook in Microsoft Excel 2007
or 2010:

Installation

1 In a Microsoft Excel session, open the Visual Basic Editor window by
clicking Visual Basic on the Developer tab. (If you do not find the
Developer tab, see the Excel Help.)

2 In the left pane, select a module for which you want to update a reference.
3 From the main menu, select Tools > References.

4 In the References dialog box, select the SpreadsheetLink2007_2010
check box.

5 Click OK.

1-7

1 Getting Started

Add-in Setup

In this section...

“Configure Microsoft® Excel® 2003 and Earlier Versions” on page 1-8
“Configure Microsoft® Excel® 2007 and 2010” on page 1-9
“Work with the Microsoft® Visual Basic® Editor” on page 1-13

Configure Microsoft Excel 2003 and Earlier Versions

To enable the Spreadsheet Link EX Add-In, start Microsoft Excel and follow
these steps:

1 Click Tools > Add-Ins. The Add-Ins dialog box appears.
2 Click Browse.

3 Select matlabroot\toolbox\exlink\excllink.xla.

Note Throughout this document the notation matlabroot is the MATLAB
root folder, the folder where the MATLAB software is installed on your
system.

4 Click OK.

In the Add-Ins dialog box, the Spreadsheet Link EX for use with
MATLAB check box 1s now selected.

5 Click OK to exit the Add-Ins dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel
session.

The MATLAB Command Window button appears on the Microsoft
Windows taskbar.

d’_'Startl J | 8] Microsoft Excel | ol MATLAB Comnmand Window

1-8

Add-in Setup

The Spreadsheet Link EX toolbar appears on your Excel worksheet.

Start MATLAB

Start Execute MATLAB Function Wizard for
MATLAB command Spreadsheet Link EX

4 icrosoft Excel - Book1
T File

EdRolgQIVE S G
< oy g

startmatlab putmatrix getmatrix evalstring getfigure wizard preferences

Edit Miew Insert [Format Tools Dakh Window Hel

Reply with Chane

] 3 4 S 4

Send data to Retrieve data
MATLAB from MATLAB

Import current Set MATLAB
MATLAB figure Preferences

The Spreadsheet Link EX software is now ready for use.

Configure Microsoft Excel 2007 and 2010

To enable the Spreadsheet Link EX Add-In, start a Microsoft Excel session
and follow these steps. If you use Microsoft Excel 2007:

i E‘*’a ,
. it/ . .
1 Click , the Microsoft Office Button.

2 Click Excel Options. The Excel Options dialog box appears.
If you use Microsoft Excel 2010:

1 Select File from the main menu.

2 Click Options. The Excel Options dialog box appears.

The next steps are the same for both versions:

1-9

1 Getting Started

3 Click Add-Ins.

4 From the Manage selection list, choose Excel Add-Ins.
5 Click Go. The Add-Ins dialog box appears.

6 Click Browse.

7 Select matlabroot\toolbox\exlink\exc11ink2007.x1lam

8 Click Open. In the Add-Ins dialog box, the Spreadsheet Link EX for use
with MATLAB check box is now selected.

Add-Inz @

Add-Ins available:

Automation...

; Analysis ToolPak - oK

| Analysis ToolPak - VBA

|__| Eure Currency Tools
|| Solver Add-in

[l Spreadsheet Link EX 3. 1.2 for use with MATLAR and Excel 2007/2010

Spreadsheet Link EX 3. 1.2 for use with MATLAB and Excel 20072010
Spreadsheet Link EX 3. 1.2 for use with MATLAB and Excel 20072010

9 Click OK to close the Add-Ins dialog box.

10 Click OK to close the Excel Options dialog box.

The Spreadsheet Link EX Add-In loads now and with each subsequent Excel
session.

The MATLAB Command Window button appears on the Microsoft
Windows taskbar.

1-10

Add-in Setup

The MATLAB group appears on the top right of the Home tab in your Excel
worksheet:

= B OE3
a@:@%
Sort & Find &
Filter = Select =
EdltL Start MATLAE

Send data to MATLAE

O Get data from MATLAE
Run MATLAE command
Get MATLAE figure

MATLAE Function Wizard

Preferences

The Spreadsheet Link EX software is now ready for use.

Right-click a cell for MATLAB options. The following menu appears:

1-11

1 Getting Started

1-12

Calibri ~ 11 -~ A" A7 % - %%

BI%&'&' .0 .00

- %

0 2.0

,@‘

:l Cut

By
=

i b

Copy
Paste Options:

Paste Special...

Insert...
Delete...

Clear Contents

Filter
Sort

Insert Comment

Format Cells...

Pick From Drop-down List...

Define Name...

Hyperlink...

MATLAE

Send data to MATLAE
et data from MATLAB
Run MATLAE command
Get MATLAE figure
Function Wizard

k

Add-in Setup

Caution Using both the 2003 and 2007/2010 Add-Ins referenced in Excel
2007/2010 causes problems with the context-sensitive menu. Use only one
Add-In at a time to avoid this issue.

Work with the Microsoft Visual Basic Editor

Follow these steps to enable the Spreadsheet Link EX software as a Reference
in the Microsoft Visual Basic Editor:
1 Open a Visual Basic session.

e [f you are running the Excel 2003 software, click
Tools > Macro > Visual Basic Editor.

¢ If you are running the Excel 2007 or 2010 software, click the Visual

]
Basic button (-1) on the Developer tab, or press Alt+F11.

Note For instructions how to display the Developer tab, see Excel Help.

2 In the Visual Basic toolbar, click Tools > References.

3 In the References — VBA Project dialog box, select the
SpreadsheetLinkEX or SpreadsheetLink2007_2010 check box.

4 Click OK.

1-13

1 Getting Started

Customization

In this section...

“Set Spreadsheet Link EX Preferences” on page 1-14
“Use Particular Versions of MATLAB” on page 1-15

Set Spreadsheet Link EX Preferences

Use the Preferences dialog box to set Spreadsheet Link EX preferences. Click
the preferences button in the Excel toolbar or MATLAB group to open

this dialog box.

-

[¥ ‘Start MATLAB at Excel startup

MATLAE startup folder

B =]

™ Use MATLAB desktop

[~ Show MATLAE errors

r Force use of MATLAE cell arrays with
MLPutMatrix

[” Treat missing/fempty cells as NaM

Ok Cancel

Preferences include:

1-14

Customization

Start MATLAB at Excel startup starts a MATLAB session automatically
when an Excel session starts. By default, this option is enabled.

MATLAB startup folder lets you specify the startup folder for your
MATLAB session.

Use MATLAB desktop starts the MATLAB desktop, including the current
folder, workspace, command history, and Command Window panes, when
an Excel session starts.

Show MATLAB errors displays MATLAB error messages in Excel
worksheet cells. Without this option, worksheet cells display Excel error
messages. See “Worksheet Cell Errors” on page 3-2.

Force use of MATLAB cell arrays with MLPutMatrix enables the
MLPutMatrix function to use cell arrays for data transfer between the Excel
software and the MATLAB workspace.

Treat missing/empty cells as NaN sets data in missing or empty cells to
NaN or zero.

Use Particular Versions of MATLAB

If there are several versions on MATLAB installed on your computer, the
Spreadsheet Link EX software uses the last registered version. Typically, the
last registered version is the latest version you have installed. To change the
last registered version of MATLAB:

1 Shut down all MATLAB and Excel sessions.

2 Open a Command Prompt window, and using cd, change to the bin\win64
or bin\win32 subfolder of the MATLAB installation folder.

3 Enter the command:

.\matlab /regserver

1-15

1 Getting Started

Startup and Shutdown

1-16

In this section...

“Start Spreadsheet Link EX Automatically” on page 1-16
“Start Spreadsheet Link EX Manually” on page 1-16
“Connect to Already Running MATLAB Session” on page 1-16

“Stop Spreadsheet Link EX” on page 1-18

Start Spreadsheet Link EX Automatically

When installed and configured according to the instructions in “Add-in Setup”
on page 1-8, the Spreadsheet Link EX and MATLAB software automatically
start when you start a Microsoft Excel session.

Start Spreadsheet Link EX Manually
To start the Spreadsheet Link EX and MATLAB software manually from the

Excel interface:
1 Click Tools > Macro.

¢ In Excel 2007, click the View tab or the Developer tab, and then click
the Macros button.

e In Excel 2010, click the View menu and select Macros on the Excel
toolstrip, then click the View Macros menu item.

2 Enter matlabinit into the Macro Name/Reference box.

3 Click Run. The MATLAB Command Window button appears on the
Microsoft Windows taskbar.

Connect to Already Running MATLAB Session

By default, Spreadsheet Link EX starts a new MATLAB session.
Alternatively, it can connect to an already running MATLAB session.

Startup and Shutdown

Note If there are several versions of MATLAB installed on your computer,
Spreadsheet Link EX always uses the last registered version. If you try to
connect to an already running MATLAB session that is not the last registered
version, Spreadsheet Link EX starts a new MATLAB session rather than
connecting to the existing one. See how to change the last registered version
in “Use Particular Versions of MATLAB” on page 1-15.

To connect a new Excel session to already running MATLAB session:

1 In MATLAB, enter the following command:

enableservice('AutomationServer', true)

This command converts a running MATLAB session into an Automation
server.

2 Start a new Excel session. It automatically connects to the running
MATLAB session.

Alternatively, you can start MATLAB as an automation server from the
beginning. To start MATLAB as an automation server, use the automation
command-line option:

matlab -automation

This command does not start MATLAB in a full desktop mode. To start
MATLAB in a full desktop mode, use the -desktop option:

matlab -automation -desktop

If you always use MATLAB as an automation server, modify the shortcut that
you use to start MATLAB:

1 Right-click your MATLAB shortcut icon. (You can use the icon on your
desktop or in the Windows Start menu.)

2 Select Properties.

3 Click the Shortcut tab.

1-17

1 Getting Started

1-18

4 Add the string -automation in the Target field. Remember to leave a
space between matlab.exe and /automation.

5 Click OK.

Stop Spreadsheet Link EX
If you started the Spreadsheet Link EX and MATLAB software from the
Excel interface:

¢ To stop both the Spreadsheet Link EX and MATLAB software, close the
Excel session as you normally would.

® To stop the Spreadsheet Link EX and MATLAB software and leave the
Excel session running, enter the =MLClose () command into an Excel
worksheet cell. You can use the MLOpen or matlabinit functions to restart
the Spreadsheet Link EX and MATLAB sessions manually.

If you connected an Excel session to an existing MATLAB session, close Excel
and MATLAB sessions separately. Closing one session does not automatically
close the other.

MATLAB® Functions in Microsoft® Excel®

MATLAB Functions in Microsoft Excel

In this section...
“Spreadsheet Link EX and Microsoft® Excel® Functions” on page 1-19

“Types of Spreadsheet Link EX Functions” on page 1-19
“Use Worksheets” on page 1-20

“Work with Arguments” on page 1-22

“Use MATLAB Function Wizard” on page 1-24

“Use Spreadsheet Link EX Functions in Macros” on page 1-29

Spreadsheet Link EX and Microsoft Excel Functions
¢ Spreadsheet Link EX functions perform an action, while Microsoft Excel
functions return a value.

® Spreadsheet Link EX function names are not case sensitive; that is,
MLPutMatrix and mlputmatrix are the same.

e MATLAB function names and variable names are case sensitive; that is,
BONDS, Bonds, and bonds are three different MATLAB variables.

Note Excel operations and function keys may behave differently with
Spreadsheet Link EX functions.

Types of Spreadsheet Link EX Functions

Spreadsheet Link EX functions manage the connection and data exchange
between the Excel software and the MATLAB workspace, without your
ever needing to leave the Excel environment. You can run functions as
worksheet cell formulas or in macros. The Spreadsheet Link EX software
enables the Excel product to act as an easy-to-use data-storage and
application-development front end for the MATLAB software, which is a
powerful computational and graphical processor.

1-19

1 Getting Started

1-20

There are two types of Spreadsheet Link EX functions: link management
functions and data management functions.

Link management functions initialize, start, and stop the Spreadsheet Link
EX and MATLAB software. You can run any link management function other
than matlabinit as a worksheet cell formula or in macros. You must run
the matlabinit function from the Excel Tools > Macro menu, or in macro
subroutines.

Data management functions copy data between the Excel software and

the MATLAB workspace, and execute MATLAB commands in the Excel
interface. You can run any data management function other than MLPutVar
and MLGetVar as a worksheet cell formula or in macros. The MLPutVar and
MLGetVar functions can run only in macros.

Use Worksheets

Entering Functions into Worksheet Cells

Spreadsheet Link EX functions expect Al-style worksheet cell references;
that is, columns designated with letters and rows with numbers (the default
reference style). If your worksheet shows columns designated with numbers
instead of letters:

1 Click Tools > Options.
2 Click the General tab.

3 Under Settings, clear the R1C1 reference style check box.

Enter Spreadsheet Link EX functions directly into worksheet cells as
worksheet formulas. Begin worksheet formulas with + or = and enclose
function arguments in parentheses. The following example uses MLPutMatrix
to put the data in cell C10 into matrix A:

=MLPutMatrix("A", C10)

For more information on specifying arguments in Spreadsheet Link EX
functions, see “Work with Arguments” on page 1-22.

MATLAB® Functions in Microsoft® Excel®

Note Do not use the Excel Function Wizard. It can generate unpredictable
results.

After a Spreadsheet Link EX function successfully executes as a worksheet
formula, the cell contains the value 0. While the function executes, the cell
might continue to show the formula you entered.

To change the active cell when an operation completes, click Excel Tools
Options > Edit > Move Selection after Enter. This action provides a
useful confirmation for lengthy operations.

Automatic Calculation Mode Vs. Manual Calculation Mode
Spreadsheet Link EX functions are most effective in automatic calculation
mode. To automate the recalculation of a Spreadsheet Link EX function, add
to it a cell whose value changes. In the following example, the MLPutMatrix
function reexecutes when the value in cell C1 changes:

=MLPutMatrix("bonds", D1:G26) + C1

Note Be careful to avoid creating endless recalculation loops.

To use MLGetMatrix in manual calculation mode:

1 Enter the function into a cell.
2 Press F2.

3 Press Enter. The function executes.
Spreadsheet Link EX functions do not automatically adjust cell addresses.
If you use explicit cell addresses in a function, you must edit the function

arguments to reference a new cell address when you do either of the following:

® Insert or delete rows or columns.

* Move or copy the function to another cell.

1-21

1 Getting Started

1-22

Note Pressing F9 to recalculate a worksheet affects only Excel functions.
This key does not operate on Spreadsheet Link EX functions.

Work with Arguments

This section describes tips for managing variable-name arguments and
data-location arguments in Spreadsheet Link EX functions.

Variable-Name Arguments

® You can directly or indirectly specify a variable-name argument in most
Spreadsheet Link EX functions:

= To specify a variable name directly, enclose it in double quotation marks;
for example, MLDeleteMatrix ("Bonds").

= To specify a variable name as an indirect reference, enter it without
quotation marks. The function evaluates the contents of the argument to
get the variable name. The argument must be a worksheet cell address
or range name; for example, MLDeleteMatrix (C1).

Note Spreadsheet Link EX functions do not support global variables. When
exchanging data between Excel and MATLAB, the base workspace is used.

Variables in the base workspace exist until you clear them or end your
MATLAB session.

Data-Location Arguments

¢ A data-location argument must be a worksheet cell address or range name.

* Do not enclose a data-location argument in quotation marks (except in
MLGetMatrix, which has unique argument conventions).

¢ A data-location argument can include a worksheet number; for example,
Sheet3!B1:C7 or Sheet2!0OUTPUT.

MATLAB® Functions in Microsoft® Excel®

Note You can reference special characters as part of a worksheet name in
MLGetMatrix or MLPutMatrix by embedding the worksheet name within
single quotation marks ('").

1-23

1 Getting Started

Use MATLAB Function Wizard

The MATLAB Function Wizard for the Spreadsheet Link EX software allows
you to browse MATLAB folders and run functions from within the Excel
interface.

"

MATLAB Function Wizard [25m]

oo’

matablelmat - Elementary matrices and matrix manipj Update |

2. Select a function:
ril

1. Select a cateqory:

true
vander

Ll

3. Select a function signature:

TRIU(K)

TRIUEX,K)
triu

Function Help:

TRIU Extract upper triangular part. .
TRIU(X) is the upper triangular part of X,
TRILU(X,K) is the elements on and above the K-th diagonal of
¥. K =0is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

See also TRIL, DIAG.

1-24

MATLAB® Functions in Microsoft® Excel®

You can use this wizard to:

1 Display a list of all MATLAB working folders and function categories.

All folders or categories in the current MATLABPATH display in the Select
a category field. Click an entry in the list to select it. Each entry in the
list displays as a folder path and a description read from the Contents.m
file in that folder. If no Contents.m file is found, the folder or category
display notifies you as follows:

finance\finsupport -(No table of contents file)
To refresh the folder/category list, click the Update button.

2 Select a particular folder or category, and list functions available for that
folder or category.

After you select a folder or category, the Select a function field displays
available functions for that folder or category. Click a function name to
select it.

Tip The Function Wizard does not allow you to access MATLAB
constructors and methods. You can write a wrapper function for a method
or a constructor and access that wrapper. See “Using the Function Wizard
to Access Custom MATLAB Functions” on page 1-27.

3 Select a function signature and enter a formula into the current
spreadsheet cell.

After you select a function, the Select a function signature field displays
available signatures for that function. Click a function signature to select it.

4 View help for the selected function.

The Function Help field displays help for the selected function.

When you click a function signature, the Function Arguments dialog box
appears.

1-25

1 Getting Started

1-26

P o)

Function Argurments @
TRIU Inputs: - |

x | -

Optional output cell(s): |

TRIU Extract upper triangular part.
TRILX) is the upper triangular part of X,
TRIUK,K) is the elements on and above the K-th diagonal of
¥. K =0is the main diagonal, K = 0 is above the main
diagonal and K < 0 is below the main diagonal.

CIK|

This dialog box allows you to specify the cells that contain input arguments
and the cells where to display outputs. By default, the output of the selected
function appears in the current spreadsheet cell using the Spreadsheet Link
EX function matlabfcn. In the following example, the output displays in the
current spreadsheet cell and generates a MATLAB figure:

=matlabfcn("plot",Sheet1!B2:D4)

Specifying a target range of cells using the Optional output cell(s) field in
the Function Arguments dialog box causes the selected function to appear in
the current spreadsheet cell as an argument of the matlabsub function. In
addition, matlabsub includes an argument that indicates where to write the
function’s output. In the following example, the data from A2 is input to the
rand function, whose target cell is B2:

=matlabsub("rand", "Sheet1!B2",Sheet1!A2)

Tip Although the Function Wizard lets you specify multiple output cells, it
does not return multiple outputs. If you specify a range of output cells, the
wizard returns the first output argument starting in the first output cell.

MATLAB® Functions in Microsoft® Excel®

For example, if a function returns two separate elements a and b, and you
specify A1:A2 as output cells, the Function Wizard displays element a in
cell A1. It discards element b. If an output is a matrix, the Function Wizard
displays all elements of that matrix starting in the first output cell.

Using the Function Wizard to Access Custom MATLAB Functions
To access your custom MATLAB functions from the Function Wizard:

1 In MATLAB, create and save your function. For example, write the
function that computes the Fibonacci numbers and save it in the folder
Documents\MATLAB:

function f = fibonacci(n)
%FIBONACCI(N) Compute the Nth Fibonacci number.
% N must be a positive integer.
if n<2o0
error('Invalid number."')
elseif n ==
f =0;
elseif n ==
f=1;
else
f = fibonacci(n - 1) + fibonacci(n - 2);
end;
end

2 Add the folder where you saved the function to the MATLAB search path.
To add the folder to the search path, use the pathtool function or select
Set Path in the MATLAB Toolstrip.

3 In Excel, open the MATLAB Function Wizard and select the folder where
you saved your function.

1-27

1 Getting Started

1-28

MATLAB Function Wizard ==

1. Select a category:

I Documents{MATLAB - (Mo table of contents file) j Update |

2. Select a function:

fibonacc

3. Select a function signature:

FIBONACCI(N)
fibonacc

Function Help:

FIBOMACCI(M) Compute the Nth Fibonacd number,
M must be a positive integer.

Ok |

The Function Wizard does not allow you to access MATLAB constructors
and methods. To be able to access a method or a constructor from the
Function Wizard, write a wrapper function for that method or constructor.
For example, to access the timeseries (DATA) constructor from the Function
Wizard, write the following wrapper function:

MATLAB® Functions in Microsoft® Excel®

function TS = timeseries_wrapper (DATA)

% timeseries_wrapper (DATA) is a wrapper function

% for TIMESERIES (DATA)

TS = TIMESERIES(DATA) creates a time series object TS using
data DATA. By default, the time vector ranges from 0 to N-1,
where N is the number of samples, and has an interval of 1
second. The default name of the TS object is 'unnamed'.

o° o° o°

o°

T = timeseries(DATA);
TS = T.data;
end

Use Spreadsheet Link EX Functions in Macros

About the Examples

This section contains examples that show how to manipulate MATLAB data
using Spreadsheet Link EX.

¢ For an example of how to exchange data between the MATLAB and Excel
workspaces, see “Importing and Exporting Data Between the Microsoft®
Excel® Interface and the MATLAB Workspace” on page 1-32.

® For an example of how to export data from the MATLAB workspace and
display it in an Excel worksheet, see “Sending MATLAB Data to an Excel
Worksheet and Displaying the Results” on page 1-29.

Sending MATLAB Data to an Excel Worksheet and Displaying
the Results

In this example, you run MATLAB commands using VBA, send MATLAB
data to the Excel software, and display the results in an Excel dialog box.

1 Start an Excel session.

2 Initialize the MATLAB session by clicking the startmatlab button in the
Spreadsheet Link EX toolbar or by running the matlabinit function.

3 If the Spreadsheet Link EX Add-In is not enabled, enable it.

¢ For instructions on enabling this Add-In for the Excel 2003 software, see
“Configure Microsoft® Excel® 2003 and Earlier Versions” on page 1-8.

1-29

1 Getting Started

¢ For instructions on enabling this Add-In for the Excel 2007 software, see
“Configure Microsoft® Excel® 2007 and 2010” on page 1-9.

4 Enable the Spreadsheet Link EX software as a Reference in the Microsoft
Visual Basic Editor. For instructions, see “Work with the Microsoft® Visual
Basic® Editor” on page 1-13.

5 In the Visual Basic Editor, create a module.

a Right-click the Microsoft Excel Objects folder in the Project —
VBAProject browser.

b Select Insert > Module.

6 Enter the following code into the module window:

Option Base 1
Sub Method1 ()

MLShowMatlabErrors "yes"

"''"To MATLAB:
Dim Vone(2, 2
Vone(1, 1)
Vone(1, 2)
Vone(2, 1) =
Vone(2, 2)

As Double "Input

[TIT]
AWN =2 —

MLPutMatrix "a", Range("A1:B2")
MLPutVar "b", Vone
MLEvalString ("c = a*b")
MLEvalString ("d = eig(c)")

"'*'"From MATLAB:

Dim Vtwo As Variant "Output
MLGetVar "c", Vtwo

MsgBox "c is " & Vtwo(1, 1)

MLGetMatrix "b", Range("A7:B8").Address

MatlabRequest
MLGetMatrix "c", "Sheet1!A4:B5"

1-30

MATLAB® Functions in Microsoft® Excel®

MatlabRequest

Sheets("Sheet1").Select
Range("A10").Select

MLGetMatrix "d", ActiveCell.Address
MatlabRequest

End Sub

Tip Copy and paste this code into the Visual Basic Editor from the HTML
version of the documentation.

7 Run the code. Press F5 or click Run > Run Sub/UserForm.

The following dialog box appears.

Microsoft Excel @

-

cisl

8 Click OK to close the dialog box.

Note Do not include MatlabRequest in a macro function unless the macro
function 1s called from a subroutine.

Tip In macros, leave a space between the function name and the first
argument; do not use parentheses.

1-31

1 Getting Started

Importing and Exporting Data Between the Microsoft Excel
Interface and the MATLAB Workspace

® This example uses MLGetMatrix in a macro subroutine to export data from
the MATLAB matrix A into the Excel worksheet Sheet1.

Sub Test1()
MLGetMatrix "A", "Sheet1!A5"
MatlabRequest

End Sub

Note The MatlabRequest function initializes internal Spreadsheet Link
EX variables and enables MLGetMatrix to function in the subroutine.

® This example uses MLPutMatrix in a macro subroutine to import data into
the MATLAB matrix A, from a specified cell range in the Excel worksheet
Sheet1.

Sub Test2()
Set myRange = Range("A1:C3")
MLPutMatrix "A", myRange

End Sub

1-32

Work with Dates

Work with Dates

Default Microsoft Excel date numbers represent the number of days that have
passed since January 1, 1900. For example, January 1, 1950 is represented as
18264 in the Excel software.

However, MATLAB date numbers represent the number of days that have
passed since January 1, 0000, so January 1, 1950 is represented as 712224
in the MATLAB software. Therefore, the difference in dates between the
Excel software and the MATLAB software is a constant, 693960 (712224
minus 18264).

To use date numbers in MATLAB calculations, apply the 693960 constant as
follows:
e Add it to Excel date numbers that are read into the MATLAB software.

e Subtract it from MATLAB date numbers that are read into the Excel
software.

Note If you use the optional Excel 1904 date system, the constant is
695422,

Dates are stored internally in the Excel software as numbers and are
unaffected by locale.

1-33

1 Getting Started

Localization Information

This document uses the Microsoft Excel software with an English (United
States) Microsoft Windows regional setting for illustrative purposes. If you
use the Spreadsheet Link EX software with a non-English (United States)
Windows desktop environment, certain syntactical elements may not work as
illustrated. For example, you may have to replace the comma (,) delimiter
within Spreadsheet Link EX commands with a semicolon (;) or other operator.

Please consult your Windows documentation to determine which regional
setting differences exist among non-U.S. versions.

1-34

Solving Problems with
the Spreadsheet Link EX
Software

® “Model Data Using Regression and Curve Fitting” on page 2-2

® “Interpolate Data” on page 2-11

e “Price Stock Options Using the Binomial Model” on page 2-15

¢ “Compute Efficient Frontier of Financial Portfolios” on page 2-19

e “Map Time and Bond Cash Flows” on page 2-24

2 Solving Problems with the Spreadsheet Link™ EX Software

Model Data Using Regression and Curve Fitting

In this section...

“Using Worksheets” on page 2-2
“Using Macros” on page 2-6

Regression techniques and curve fitting attempt to find functions that
describe the relationship among variables. In effect, they attempt to build
mathematical models of a data set. MATLAB matrix operators and functions
simplify this task.

This example shows both data regression and curve fitting. It also executes
the same example in a worksheet version and a macro version. The
example uses Microsoft Excel worksheets to organize and display the data.
Spreadsheet Link EX functions copy the data to the MATLAB workspace, and
then executes MATLAB computational and graphic functions. The macro
version also returns output data to an Excel worksheet.

This example is included in the Spreadsheet Link EX product. To run it:
1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file Ex1iSamp.x1ls

4 Execute the example as needed.

Using Worksheets

1 Click the Sheetl tab on the Ex1iSamp.x1ls window. The worksheet for
this example appears.

Model Data Using Regression and Curve Fitting

1
2
3
4
5
B
T
i
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H J K L
Regression and Curve Fitting
DATA Spreadsheet Link EX Functions

35 207 1325 1. Transfer the data to MATLAB.

17 90 533 #MATLAB? <== MLPutMatrix("data".DATA)

43 180 1013

41 187 1163 2. Set up data for regression.
177 552 5326 #MATLAB? <== MLEvalString("y = data(:,3)")

a7 354 2043 #MATLAB? <== MLEvalString("e = ones(length(data),1)")

20 101 602 #MATLAB? <== MLEvalString("A = [e data(:.1:2)]")

18 91 532

17 86 543 3. Compute regression coefficients.

35 180 1134 #MATLAB? <== MLEvalString("beta = Aly")

25 136 766

17 84 495 4. Calculate regressed result.

23 102 635 #MATLAB? <== MLEvalString("fit = A*beta")

24 148 913

40 292 1591 5. Compare original data with regression results.

25 126 671 #MATLAB? <== MLEvalString("[y.k] = sortiy)")

17 88 51 #MATLAB? <== MLEvalString("fit = fit(k)")

46 235 1319 #MATLAB? <== MLEvalString("n = size(data,1)")

3T 204 1038

15 68 458 6. Use MATLAB's polynomial solving functions for anather curve fit.
85 363 2904 #MATLAB? <== MLEvalString("[p.S] = polyfit{1:n,y",5)")

66 300 2006 #MATLAB? <== MLEvalString("newfit = polyval(p,1:n,5)")

39 161 938
111 459 3282 7. Plot curves and add legend

16 80 476 #MATLAB? <== MLEvalString("plot(1:n,y.'p0" 1:n.fit. 7", 1:n,newfit.'q’): legend(data’,fit’, newfit’)")

The worksheet contains one named range: A4:C28 is named DATA and
contains the data set for this example.

2 Make E5 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the sample data set to the
MATLAB workspace. The data set contains 25 observations of three
variables. There is a strong linear dependence among the observations; in
fact, they are close to being scalar multiples of each other.

3 Move to cell E8 and press F2; then press Enter. Repeat with cells E9 and
E10. These Spreadsheet Link EX functions regress the third column of data
on the other two columns, and create the following:

® A single vector y containing the third-column data.

¢ A three-column matrix A, that consists of a column of ones followed by
the rest of the data.

2-3

2 Solving Problems with the Spreadsheet Link™ EX Software

2-4

4 Execute the function in cell E13. This function computes the regression

coefficients by using the MATLAB back slash (\) operation to solve the
(overdetermined) system of linear equations, A*beta = y.

5 Execute the function in cell E16. MATLAB matrix-vector multiplication

produces the regressed result (fit).

6 Execute the functions in cells E19, E20, and E21. These functions do the

following:
a Compare the original data with fit.
b Sort the data in increasing order and apply the same permutation to fit.

¢ Create a scalar for the number of observations.

7 Execute the functions in cells E24 and E25. Often it is useful to fit a

polynomial equation to data. To do so, you would ordinarily have to set up
a system of simultaneous linear equations and solve for the coefficients.
The MATLAB polyfit function automates this procedure, in this case for a
fifth-degree polynomial. The polyval function then evaluates the resulting
polynomial at each data point to check the goodness of fit (newfit).

8 Execute the function in cell E28. The MATLAB plot function graphs the

original data (blue circles), the regressed result fit (dashed red line), and
the polynomial result (solid green line). It also adds a legend.

Model Data Using Regression and Curve Fitting

Figure1 E=N Bl =X
File Edit View Inset Tools Desktop Window Help &
NEEdL | L RVOUDEL- G| DE nDO

6000
2 data

"""" fit K

5000 newfit

4000 - =

3000 a1
2000 J}"CF'Q' 1
o O‘.
1000 oo e0® -
-c-ﬂ'G"'
e N g
U | | |
0 5 10 15 20 25
Since the data is closely correlated but not exactly linearly dependent, the

fit curve (dashed line) shows a close, but not an exact, fit. The fifth-degree

polynomial curve, newfit, is a more accurate mathematical model for the data.

When you finish this version of the example, close the figure window.

2 Solving Problems with the Spreadsheet Link™ EX Software

Using Macros

1 Click the Sheet2 tab on Ex1iSamp.x1s. The worksheet for this example
appears.

A B C D
Regression and Curve Fitting Macro
(See Module 1)
0 === CunveFit(DATA "AT" "BT","CT")

y fit newfit

2-6

Model Data Using Regression and Curve Fitting

2 Make cell A4 the active cell, but do not execute it yet.

Cell A4 calls the macro CurveFit, which you can examine in the Microsoft

Visual Basic environment.

E Microseft Visual Basic for Applications - ExliSamp.xls

=N B =

! File Edit View Inset Format Debug Run Tools Add-Ins Window Help Type a question for help -
R i EENN- - pom @ e B @ Ln2 Coll .
Project - ExliSamp x
= x| #2 ExliSamp.xls - Modulel (Code) o -E |]
== e |
i |:General] ﬂ |:Declarations] ﬂ

E@ ExliSamp (ExliSamp.ls)

=125 Microsoft Excel Objects
Sheetl (Sheet1)

Sheet5 (Sheets)

Sheet2 (SheetZ)
Sheet3 (Sheet3) Function CurveFit (aData, sTargetl, sTarget2, sTarget3)
Sheet4 (Sheetd) 'MATLAB regression and curve fitting macro

e

Sheets (Sheets) MLPutMatrix "data", aData
@ ThisWarkbook MLEvalString "y = data(:,3)"
B3 Modules MLEvalString "n = length(y)"
il Modulel MLEvalString "e = cgnes(n,1)"
-[77 References MLEvalString "A = [e data(:,1:2)]"
&8} Spreadsheetlink2007_2010 MLEvalString "beta = B\y"
MLEvalString "fit = A*beta"
'l m b MLEvalS3tring "[v,k] = sortiy)"™
MLEwvalString "fit = fit(k)"
Properties - Modulel x| MLEvalString "[p, 5] = polyfit(l:n,v',5)"
|M0,dulel Madule j MLEvalString "newfit = polyval(p,l:n,5)'"
Alphabetic lCahegorized I I‘ILEVE‘.J.StI.‘I_.Z‘.Lg "plot (l:n,v, 'bo',l:in, fit,'r:'",1:n,newfit, 'g’
MLGetMatrix "y", sTargetl
MModulel MLGetMatrix "fit", sTarget2
MLGetMatrix "newfit", sTarget3

End Function

3 While this module is open, make sure that the Spreadsheet Link EX add-in

1s enabled.

¢ If you are using the Excel 2003 software:

a Click Tools > References.

2-7

2 Solving Problems with the Spreadsheet Link™ EX Software

b In the References dialog box, make sure that the excllink.xla check
box is selected. If not, select it.

¢ Click OK.
¢ [f you are using the Excel 2007 software:

|'I."-|'
d Click the Microsoft Office Button, “

L

e Click Options. The Excel Options pane appears.

f Click Add-Ins.

g From the Manage selection list, choose Excel Add-Ins.
h Click Go. The Add-Ins pane appears.

i Make sure that the Spreadsheet Link EX for use with MATLAB
check box is selected. If not, select it.

[Add-Ins @

Add-Ins available:

[] Analysis ToolPak - oK
[T Analysis ToolPak - vBA

|:| Euro Currency Tools
[] solver Add-in

-

Cancel

Spreadsheet Link EX 3.1. 2 for use with MATLAB and Excel 2007/2010

Browse...

rHke

Automation...

Spreadsheet Link EX 3. 1.2 for use with MATLAB and Excel 2007/2010
Spreadsheet Link EX 3. 1.2 for use with MATLAB and Excel 20072010

Model Data Using Regression and Curve Fitting

i Click OK to close the Add-Ins pane.
k Click OK to close the Excel Options pane.

4 In cell A4 of Sheet2, press F2; then press Enter to execute the CurveFit
macro. The macro does the following:

a Runs the same functions as the worksheet example (in a slightly
different order), including plotting the graph.

b Calls the MLGetMatrix function in the CurveFit macro. This macro
copies to the worksheet the original data y (sorted), the corresponding
regressed data fit, and the polynomial data newfit.

2 Solving Problems with the Spreadsheet Link™ EX Software

A B C D
Regression and Curve Fitting Macro
(See Module 1)

0 === CurveFit[DATA,"AT","BT","CT")

y fit newfit
1325 | 379.0475] 402.008
b33 430.3099 | 515.8528
1013 | 462.4722 | 549.7114
10 1163 | 472.0222 | 543.0184
11 5326 | 501.7971] 524.5495
12 2043 | 476.7973| 513.775
13 602 467.2472 | 522 2081
14 532 570.8968 | 554.761
15 543 641.1212 | 611.0947
16 1134 | 743.6461 | B686.9715
17 766 TE7.5211 | 775.6072
18 495 773.5589 | 869.023
19 635 1143.781 | 959.3574
20 913 1279.593 | 1040.419
21 1591 | 1201.2159] 1108.636
22 671 1098.695 | 1164.812
23 s 1251.081 | 1215.276
24 1319 | 1478743 | 1273.275
25 1038 | 1163.157 | 1360.322
26 458 1479157 | 1507.557
27 2904 | 2086177 | 1757.09
23 2006 |2011.592|2163.358
29 938 2666.224 | 2794 475
30 3282 | 3483.345|3733.586
31 476 5197.796 | 5080.215

2-10

Interpolate Data

Interpolate Data

Interpolation is a process for estimating values that lie between known data
points. It is important for applications such as signal and image processing

and data visualization. MATLAB interpolation functions let you balance the
smoothness of data fit with execution speed and efficient memory use.

This example is included in the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file Ex1iSamp.x1ls

4 Execute the example as needed.

This example uses a two-dimensional data-gridding interpolation function
on thermodynamic data, where volume has been measured for time

and temperature values. It finds the volume values underlying the
two-dimensional, time-temperature function for a new set of time and
temperature coordinates.

The example uses a Microsoft Excel worksheet to organize and display the
original data and the interpolated output data. You use Spreadsheet Link
EX functions to copy the data to and from the MATLAB workspace, and then
execute the MATLAB interpolation function. Finally, you invoke MATLAB
graphics to display the interpolated data in a three-dimensional color surface.

1 Click the Sheet3 tab on Ex1iSamp.x1s. The worksheet for this example
appears.

2-11

2 Solving Problems with the Spreadsheet Link™ EX Software

2-12

) =] =
Data Interpolation
Original Data
Time Temp Volume

0025 6300 2504.03

00s0 BE05 253507

0075 B30T 256291

0100 6303 257574

0125 6320 260616

0150 6350 2628.53

01vs 68385 268138

0200 6322 271208

0225 7008 276752

0250 7033 251554

0275 7053 2824.37

0300 065 257365

0.325 TN 2E3z.20

0.350 144 2536.43

0.375 T8z z2anz.ov

0400 7233 232004

0425 T265 232335

0450 7346 2334.23

0475 7385 2335855

0500 7422 301293

0525 7437 303312

0550 7455 313001

0575 7467 317324

0600 74¥2 313071

0625 7500 313475

Interpolated Values

Temp
Time B&.0 B85 53.0 B35 J0.0 it} .0 k) i) 725 il Fich-) 4.0 4.5

750

0.025)
0.05
0.075)
0.1
0,125
0.15
0175
0.2
0.225)
0.25)
0.275)
0.3
0.325)
0.35
0,375
0.4
0.425)
10.45)
0.475)
0.5
0.525)
0.55
0.575
(.5

Spreadsheet Link EX Functions

1. Transfer ariginal data o MATLAB.

HMATLAE <== MLPutMatriu["Labels”, Ad:Cd]
#MATLAE <== MLPutMatria["".A5:A23]
HMATLAE <== MLPutMatria["T" B5:E23)
HMATLAE <== MLPutMatrin["y",C5:C231

2. Transfer interpalation data paints to MATLAB.
#MATLAE <== MLPutMatrin("xa" ET:E30)
HMATLAE <== MLPutMatrix["Ta".F6: TE)

3. Execute MATLAB data interpolation function.
#MATLAE <== MLEvalStringl "%, TI, VIl = griddatal.T.\ xa.Ta, inudist’]"]

4. Transpose output data matrix and transfer data to Excel,
HMATLAE <== MLEwalStringl("lV' = V11"
HMATLAE <== MLGetMatria"V" "sheet3IFT"]

5. Platinterpolated data and label the figure.
HMATLAE <== MLEwalString("surf(x, T, W tide(Interpolated Data’);ulabelll abels {1 vlabel(L abelsi2t); zlabellL abel=i3t); arid on]

The worksheet contains the measured thermodynamic data in cells A5:A29,
B5:B29, and C5:C29. The time and temperature values for interpolation
are in cells E7:E30 and F6:T6, respectively.

2 Make A33 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that passes the Time, Temp, and Volume
labels to the MATLAB workspace.

3 Make A34 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the original time data to the
MATLAB workspace. Move to cell A35 and execute the function to copy the

Interpolate Data

Time

0.025)
0.05)
0.075)
0.1
0.125
0.15]
0.175
0.2
0.225)
0.25)
0.275)
0.3
0.325)
0.35)
0.5375)
0.4
0.425)
0.45)
0.475)
0.5
0.525)
0.55)
0.575)
0.6

original temperature data. Execute the function in cell A36 to copy the
original volume data.

4 Move to cell A39 and press F2; then press Enter to copy the interpolation
time values to the MATLAB workspace. Execute the function in cell A40 to

copy the interpolation temperature values.

5 Execute the function in cell A43. griddata is the MATLAB two-dimension
interpolation function that generates the interpolated volume data using
the inverse distance method.

6 Execute the functions in cells A46 and A47 to transpose the interpolated
volume data and copy it to the Excel worksheet. The data fills cells F7:T3
which are enclosed in a border.

Interpolated Yalues

Temp
535.0

58.5

53.0 53.5 0.0 0.5 1.0 1.5 7z.0 725 730 T35 7d.0 7.5

al

0,

5.0

2504.03
2507.26
2510.83
2513.93
2515.14
251431
2511.84
250810
250337
2437.54
243166
2454.32
247771
2470.07
2452, 06
2453.70
2445.03
2436.07
2426.82
241731
2407.54
2337.51
2387.29
2376.71

263815
2635.76
263345

263134
2623.60
2628.55
Z628.85

262391

263132
263293
26734.64
2636.35
2638.00
26339.54
264033

264215

264315
264334
2644.45
2644. 77
Z2644.80
2644.56
2644.05
264325

270732 275003 278431 2851713 29162 Z2340.67 236140 233317 F000.06 300632 304101 312578 302
2704.73 274666 277996 =254G6.35 =2307.00 233495 235507 2376.65 2333.64 2333.35 303443 312643 303
270258 274362 277540 Z8d18d 230275 232364 234303 237051 Z38V.50 233260 30Z7.93 312637 304
2700.70 274033 277127 283766 =2535.65 232466 234343 2364.66 235167 2356.05 302143 3127.33 309
2683317 273877 ZVET.E1 2833.83 283540 232007 233814 239374 297616 237383 35068 F1EV.71 306
2635.02 2736.33 2764.43 253035 285231 =2515.87 233323 2355.97 237053 237386 3004.70 3127.35 307
Z2B37.25 ZT35.66 ZTE2.00 282731 2893.53 231203 232872 234317 236617 296521 300247 F12811 308

6.55)
565
B.32)
57T
5.02)
4. 05
2,33

2BI6.67 2734.79 276022 252468 =587.26 2308.72 232462 2344.75 236171 236253 2336.33 F125.21 309157

ZB36.88 273437 275924 282257 2885.23 2305.80 232036 2340.73 Z35V.65 2957.93 233050 312825 309

3,39

263726 273442 279990 282105 255365 2303.34 291776 233713 2953.97 2353.56 2354.50 F128.24 FW05.13
2638.05 273431 Z¥S5.76 282023 288243 230133 Z915.02 2333.97 235071 23d43.20 297352 F1EE.18 3604

263916 273565 276112 282016 =585155 283373 231275 233126 23d47.856 234545 2374.53 312807 S22

3,63

270064 273722 ZYE3.09 282081 285106 2838.7Z 23104 2323.03 234547 234221 2963.96 312730 313126

270241 2735.01 2¥65.53 282211 268097 283813 230982 2327.23 2345352 233343 236583 312766 15

i3.35)

270445 274113 ZYE8.5d 252398 285123 28383.00 230313 2326.05 234201 293716 296233 F1ZV.30 0 314513
2TOE.7S 274375 277183 2526.33 =2852.03 2838.34 230897 2325.33 2340.96 233542 2353.55 3F126.73 315166

270326 ZT4E.E6T 277562 282313 2883.20 253316 230334 232574 Z3d40.57 2334.25 235745 312607 319
27197 274392 2TTI68 283232 286475 290044 231023 2525.45 2340.24 233367 235616 312503 16
271484 275348 27406 283583 288678 230213 2963 2326.534 234057 233371 235574 312385 316

7.7
3,42
3.63)

271784 2¥57.532 2TH6.T3 283378 258313 2304.40 231352 232771 294136 2334.34 2356.22 12246 317331

272095 Z7E1dd ZYI36T 284401 285193 2307.04 231583 2323.57 234261 233555 E235V.60 FE21ET ST
272414 2¥65.73 2TI5.87 284855 283513 23101 231872 2331.890 2344.30 2337.30 235385 3120088 315

.39
0.7

272733 277037 280431 285338 £838.77 23360 232133 Z2334.68 234643 Z333.57 296283 FE1LEI 318327

273067 277514 2805.87 255543 250271 =2517.48 232567 2337.63 2945.593 234235 2366.66 F123.41 315

.53

7 Execute the function in cell A50. The MATLAB software plots and labels
the interpolated data on a three-dimensional color surface, with the color
proportional to the interpolated volume data.

2-13

2 Solving Problems with the Spreadsheet Link™ EX Software

Figurel
File Edit View Insert Tools

Ddde | | ARKTDE M- | 0E 1|

Interpolated Data

Desktop Window Help

Wolume

St
Temp 0 Tirre

When you finish the example, close the figure window.

2-14

Price Stock Options Using the Binomial Model

Price Stock Options Using the Binomial Model

The Financial Toolbox™ product provides functions that compute prices,
sensitivities, and profits for portfolios of options or other equity derivatives.
This example uses the binomial model to price an option. The binomial
model assumes that the probability of each possible price over time follows a
binomial distribution. That is, prices can move to only two values, one up or
one down, over any short time period. Plotting these two values over time is
known as building a binomial tree.

This example organizes and displays input and output data using a Microsoft
Excel worksheet. Spreadsheet Link EX functions copy data to a MATLAB
matrix, calculate the prices, and return data to the worksheet.

This example is included in the Spreadsheet Link EX product. To run it:
1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file Ex1iSamp.x1ls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox™, and
Optimization Toolbox™.,

1 Click the Sheet4 tab on Ex1iSamp.x1s to open the worksheet for this
example.

2-15

2 Solving Problems with the Spreadsheet Link™ EX Software

A B C D E F G H J K

Binomial Option Pricing
bindata Spreadsheet Link EX Functions

Asset price, so 5 52.00 1. Transfer data to MATLAB.
Option exercise price, x | $ 50.00 #MATLAB' === MLPutMatrix("b", bindata)
Riskfree interest rate, r 10%
Time to maturity, t (yrs) | 0.416667|=5/12 2. Execute MATLAB Financial Toolbox binomial option pricing function.
Time increment, dt 0.083333|=112 #MATLAB' <== MLEvalString("[p. o]=binprice(b(1)., b(2), b(3). b(4), b(5). b(6), b(7))"}
WVolatility, sig 0.4
Call (1) or put (0}, flag 0 3. Transfer output data to Excel.

#MATLAB' === MLGetMatrix("p", "asset_tree"}
#MATLAB <== MLGetMatrix("0", "value_tree")

Start Period 1 Period 2 Period 3 Period4 Period &

Asset price tree, p ($)

Option value tree, o ($

malMamIRa M MMM N R aalala A=
i A S N A S E R S P I = il el e il Bl e e

The worksheet contains three named ranges:

® B4:B10 named bindata. Two cells in bindata contain formulas:
- B7 contains =5/12
- B8 contains =1/12

® B15 named asset_tree.

® B23 named value_tree.

2 Make D5 the active cell. Press F2; then press Enter to execute the
Spreadsheet Link EX function that copies the asset data to the MATLAB
workspace.

3 Move to D8 and execute the function that computes the binomial prices.

2-16

Price Stock Options Using the Binomial Model

[F=20 = RN = R A RIFESR FURY %

4 Execute the functions in D11 and D12 to copy the price data to the Excel

A
Binomial Option Pricing

worksheet.

The worksheet looks as follows.

Asset price, so

Option exercise price, X
Risk-free interest rate, r
Time to maturity, t (yrs)
Time increment, dt
Volatility, sig

Call (1) or put {0}, flag

Asset price tree, p ($)

Option value tree, o ($

B C D E F G H
bindata Spreadsheet Link EX Functions
5 5200 1. Transfer data to MATLAB.
5 50.00 0 «<== MLPutMatrix("b", bindata)
10%
0.416667|=5/M12 2. Execute MATLAB Financial Toolbox binomial option pricing function.
0.083333|=112 0 === MLEvalString("[p, o]=binprice(b(1), b{2). b(3), b{4). b(5), b{E), B(T))")
0.4
0 3. Transfer output data to Excel.
0 === MLGetMatrix("p". "asset_tree")
0 === MLGetMatrix("0", "value_tree"}
Start Period 1 Period 2 Period 3 Period 4 Period &
52000 5B.365 65509 73527 B2527T 92628
0 46329 52000 5B.365 B5EADY T3AZT
0 0 M277 46329 52000 58.365
0 0 0 36776 41277 46.329
0 0 0 0 32765 36776
0 0 0 0 0 295192
3.728 1.664 0.428 0 0 0
0 5.918 2.964 0.876 0 0
0 0 5.060 5.164 1.793 0
0 0 0 13.224 8.723 3.671
0 0 0 0 17.235 13.224
]]]] 0 20.808

Read the asset price tree as follows:

® Period 1 shows the up and down prices.
® Period 2 shows the up-up, up-down, and down-down prices.

® Period 3 shows the up-up-up, up-up, down-down, and down-down-down

prices.

e And so on.

2-17

2 Solving Problems with the Spreadsheet Link™ EX Software

Ignore the zeros. The option value tree gives the associated option value for
each node in the price tree. The option value is zero for prices significantly
above the exercise price. Ignore the zeros that correspond to a zero in the
price tree.

5 Try changing the data in B4:B10, and then executing the Spreadsheet Link
EX functions again.

Note If you increase the time to maturity (B7) or change the time
increment (B8), you may need to enlarge the output tree areas.

6 When you finish the example, close the figure window.

2-18

Compute Efficient Frontier of Financial Portfolios

Compute Efficient Frontier of Financial Portfolios

MATLAB and Financial Toolbox functions compute and plot risks, variances,
rates of return, and the efficient frontier of portfolios. Efficient portfolios have
the lowest aggregate variance, or risk, for a given return.Microsoft Excel

and the Spreadsheet Link EX software let you set up data, execute financial
functions and MATLAB graphics, and display numeric results.

This example analyzes three portfolios, using rates of return for six time
periods. In actual practice, these functions can analyze many portfolios over
many time periods, limited only by the amount of computer memory available.

This example is included in the Spreadsheet Link EX product. To run it:
1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.

2 Navigate to the folder matlabroot\toolbox\exlink\.

3 Open the file Ex1iSamp.x1ls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox, and
Optimization Toolbox.

1 Click the Sheet5 tab on ExliSamp.x1ls. The worksheet for this example
appears.

2-19

2 Solving Problems with the Spreadsheet Link™ EX Software

2-20

A B C D

Portfolio Efficient Frontier

Rates of return Global Corp. Bnd Small Cap
Nov-91| 7.125% 4.125% B8.375%
Nov-92| 5.125% 5125% 3.875%
MNov-93| -1.375% 5.750% 10.500%
MNov-94| 7.750% 6.000% 14.750%
Nov-95| 8.250% 6.375% -3.625%
MNov-96| 12.625% 6.125% 9.125%

Spreadsheet Link EX Functions
1. Transfer data to MATLAB.

F#MATLAB?
#MATLAB?

2. Execute MATLAB Financial Teolbox functions.
=== MLEvalString([ret, cov] = ewstatsiretseries)”)
=== NLEvalString([risk, ror, weights] = portopt(ret, cov, 20)")

F#MATLAB?
#MATLAB?

3. Transfer output data to Excel.

F#MATLAB?
F#MATLAB?
#MATLAB?

4. Plot efficient frontier data and label the figure.
=== [ILEvalString("portopt(ret, cov, 20); grid on; xlabel(Labels{1}); ylabel(Labels{2})")

F#MATLAB?

=== MLPutMatrix("Labels", F3:G3)
=== |ILPutMatrix("retseries”, B4:D9)

=== MLGetMatrix("risk”, "sheets!F47)
=== MLGetMatrix("ror”, "sheetb!G4™)
=== MLGetMatrix["weights”, "sheet5IH4")

Risk

ROR

H

Global
Weights

| d

Corp. Bnd Small Cap

2 Make A15 the active cell. Press F2; then press Enter. The Spreadsheet
Link EX function transfers the labels that describe the output that the

MATLAB software computes.

3 Make A16 the active cell to copy the portfolio return data to the MATLAB
workspace.

4 Execute the functions in A19 and A20 to compute the Financial Toolbox
efficient frontier function for 20 points along the frontier.

5 Execute the Spreadsheet Link EX functions in A23, A24, and A25 to copy

the output data to the Excel worksheet.

The worksheet looks as follows.

Compute Efficient Frontier of Financial Portfolios

Corp. Bnd Small Cap

4.125%
5.125%
5.750%
6.000%
6.375%
5.125%

8.375%
3.875%
10.500%
14.750%
-3.625%
9.125%

A B

1 |Portfolio Efficient Frontier

2

3 Rates of return Global
4 Nov-81| 7.125%
5 Nov-92| 5.125%
5 Nov-93| -1.375%
7 Nov-94| 7.750%
3 Nov-95| 8.250%
] Nov-96| 12.625%
10

11

12

12 Spreadsheet Link EX Functions
14 1. Transfer data to MATLAB.

0 === MLPutMatrix("Labels”, F3:G3)

0 === MLPutMatrix("retseries”, B4:D9)

18 2. Execute MATLAB Financial Toolbox functions.
0 === MLEvalString("[ret, cov] = ewstats(retseries)”)
0 === MLEwvalString("[risk, ror, weights] = portopt(ret, cov, 20)")

22 3. Transfer output data to Excel.

27 |4. Plot efficient frontier data and label the figure.

28 |#MATLAB?

0 === MLGetMatrix("risk”, "sheets!F47)

0 === MLGetMatrix("ror", "sheetb!G47)

0 === MLGetMatrix("weights”, "sheet5IH4")

E G H | J
Global Corp. Bnd Small Cap
Risk ROR Weights
0.730%| 5.643% 0.3% 96.1% 3.5%
0.760%| 5.723% 4.0% 39.7% 6.3%
0.844%| 5.803% 7.7% 83.3% 9.0%
0.968%| 5.883% 11.3% 76.9% 11.8%
1.118%| 5.964% 15.0% 70.5% 14.5%
1.287%| 6.044% 18.7% 64.0% 17.3%
1.466%| 6.124% 22.3% 57.6% 20.0%
1.653%| 6.204% 26.0% 51.2% 22.8%
1.846%| 6.284% 29.7% 44 8% 25.5%
2.042%| 6.365% 33.3% 38.4% 28.3%
2241%| 6.445% 37.0% 32.0% 31.1%
2.443%| 6.525% 40.6% 25.6% 33.8%
2.646%| 6.605% 44.3% 19.1% 36.6%
2.850%| 6.685% 438.0% 12.7% 39.3%
3.055%| B6.766% 51.6% 6.3% 42.1%
3.262%| 6.846% 55.0% 0.0% 45.0%
3.620%| 6.926% 41.3% 0.0% 58.7%
4.213%| 7.006% 27.5% 0.0% 72.5%
4.955%| 7.086% 13.8% 0.0% B6.2%
5.791%| 7.167% 0.0% 0.0% 100.0%

=== [ILEvalString("portopt(ret, cov, 20); grid on; xlabel(Labels{1}); ylabel(Labels{2})")

The data describes the efficient frontier for these three portfolios: that set
of points representing the highest rate of return (ROR) for a given risk. For
each of the 20 points along the frontier, the weighted investment in each

portfolio (Weights) would achieve that rate of return.

6 Now move to A28 and press F2; then press Enter to execute the Financial
Toolbox function that plots the efficient frontier for the same portfolio data.

The following figure appears.

2-21

2 Solving Problems with the Spreadsheet Link™ EX Software

Efficient Frontier EI@
File Edit View Inset Tools Desktop Window Help &
bl—:'.ld;i [:E +x—x€-r?@ih-£' @J DIE E
Mean-Variance-Efficient Frontier
0.074 T
0.072 — --
N
0.068 ----------- L
0.066 f-------=--- :
o= |
o \
o i
0.064 F----------- -
0.062----------- :
0.06 — e
0.058 [-------=-7-
0.056 ‘ ‘
0 0.01 0.02 0.03 0.04 0.05 0.06
Risk

The light blue line shows the efficient frontier. Note the change in slope
above a 6.8% return because the Corporate Bond portfolio no longer
contributes to the efficient frontier.

7 To try running this example using different data, close the figure window
and change the data in cells B4:D9. Then execute all the Spreadsheet Link

2-22

Compute Efficient Frontier of Financial Portfolios

EX functions again. The worksheet then shows the new frontier data, and
the MATLAB software displays a new efficient frontier graph.

When you finish this example, close the figure window.

2-23

2 Solving Problems with the Spreadsheet Link™ EX Software

Map Time and Bond Cash Flows

2-24

This example shows how to use the Financial Toolbox and Spreadsheet Link
EX software to compute a set of cash flow amounts and dates, given a portfolio
of five bonds with known maturity dates and coupon rates. It is included in
the Spreadsheet Link EX product. To run it:

1 Start Excel, Spreadsheet Link EX, and MATLAB sessions.
2 Navigate to the folder matlabroot\toolbox\exlink\.
3 Open the file Ex1iSamp.x1ls

4 Execute the example as needed.

Note This example requires Financial Toolbox, Statistics Toolbox, and
Optimization Toolbox.

1 Click the Sheet6 tab on Ex1iSamp.x1s. The worksheet for this example
appears.

Map Time and Bond Cash Flows

(3|33 (2(a]e|w|N|o|n|» | w]n |

18

K L M N

Cash Flow Dates

Cash Flow Amounts

A B E D E F G H |
Cash Flow and Time Mapping for a Portfolio of Bonds

Settlement Date 26-Jul-99 Bond1

Bond2

Bond Data Bond3

Bond4

Maturity Coupon Rate Bond5
Bond1 15-Mov-99 0.05875
Bond2 15-May-00 0.06375
Bond3 15-Mov-00 0.08500
Bond4 15-May-01 0.08000
Bond5 15-Mov-01 015750

Bond1

Bond2

Spreadsheet Link EX Functions Bond3

1. Transfer data to MATLAB. Bond4

#MATLAB" «== MLPutMatrix("maturity”, Maturity’) Bond5

#MATLAB" <== MLPutMatrix("cpnrate”,"CpnRate")
#MATLAB' === MLPutMatrix("sd",C3)

2. Execute MATLAB Financial Toolbox Cash flow and Time mapping function.
#MATLAB® <== MLEvalString("md = x2mdate(maturity,0); sdm = x2mdate(sd.0)")
#MATLAB" <== MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")

3. Transform date numbers to string cell array.

#MATLAB" <== MLEvalString("i = find(isnan(cfd)); zcfd = cfd: zcfd(i) = 0: scfd=datestr{zcfd.2);")
#MATLAB" <== MLEvalstring("ccfd = num2cell{scfd,2); ccfd(i) = {N/AT; ccfd = reshape(ccfd, size(cfd)).”)
#MATLAB" «== MLEvalString("ccfa = cfa; ccfa(i) = 0; alldates = ccfd(end, :);")

4. Transfer output data to Excel.

#MATLAB' <== MLGetMatrix("ccfd", "sheet6li3")
#MATLAB <== MLGetMatrix("alldates”, "sheet6!i13")
#MATLAB' <== MLGetMatrix("ccfa”, "sheet6li14")

9. Plat the cash flow diagram.

#MATLAB" <== MLEvalString("cfploticfd, cfa); dtaxis(x",6.sdm.50):title(Cash Flow Diagram’);xlabel(Cash Flow Dates’).ylabel(Bonds’).")

2 Make A18 the active cell. Press F2, then Enter to execute the Spreadsheet
Link EX function that transfers the column vector Maturity to the

MATLAB workspace.

3 Make A19 the active cell to transfer the column vector Coupon Rate to the

MATLAB workspace.

4 Make A20 the active cell to transfer the settlement date to the MATLAB

workspace.

5 Execute the functions in cells A23 and A24 to enable the Financial Toolbox

software to compute cash flow amounts and dates.

2-25

2 Solving Problems with the Spreadsheet Link™ EX Software

2-26

6 Now execute the functions in cells A27 through A29 to transform the dates
into string form contained in a cell array.

7 Execute the functions in cells A32 through A34 to transfer the data to the

Excel worksheet.

A B C D E
Cash Flow and Time Mapping for a Portfolio of Bonds
Settlement Date 26-Jul-99

Bond Data

Maturity Coupon Rate
Bond1 15-Mov-39 0.05875
Bond2 15-May-00 0.06375
Bond3 15-Mov-00 0.08500
Bond4 15-May-01 0.08000
Bond5 15-Mov-01 0.15750

Spreadsheet Link EX Functions

1. Transfer data to MATLAB.
0 === MLPutMatrix{"maturity”, Maturity’)
0 === MLPutMatrix("cpnrate”,"CpnRate")
0 === MLPutMatrix("sd",C3)

2. Execute MATLAB Financial Toolbox Cash flow and Time mapping function.
0 === MLEvalString("md = x2mdate(maturity,0); sdm = x2mdate(sd,0)")
0 === MLEvalString("[cfa, cfd] = cfamounts(cpnrate, sdm, md, 2)")

3. Transform date numbers to string cell array.

4. Transfer output data to Excel.

0 «== MLGetMatrix("ccfd", "sheetbli3")
0 === MLGetMatrix("alldates", "sheetfli13")
0 === MLGetMatrix{"ccfa", "shestfli14")

5. Plot the cash flow diagram.
#MATLAB’ === MLEvalString("cfplot(cfd, cfa); dtaxis(x.6,sdm,50):title(Cash Flow Diagram’).xlabel(Cash Flow Dates');ylabel(Bonds’);")

Bond1
Bond2
Bond3
Bond4
Bond5

Bond1
Bond2
Bond3
Bond4
Bond5

7/26/1999
7/26/1999
7/26/1999
7/26/1999
7/26/1999

J K L M N
Cash Flow Dates

11/15/1999 N/A MIA MIA NiA

11/15/1999 5/15/2000 MIA MIA NiA

11/15/1999 5/15/2000 11/15/2000 MN/A NiA

11/15/1999 5/15/2000 11/15/2000 5/M15/2001 NiA

11/15/1999 5/15/2000 11/15/2000 5/15/2001 11/15/2001

Cash Flow Amounts

7/26/1999 11/15/1999 5/15/2000 11/15/2000 5/15/2001 11/15/2001
-1.1495 102.9375 0 0 0 0
-1.2473 3.1875 103.1875 0 0 0
-1.6630 4.2500 42500 104.2500 0 0
-1.5652 4.0000 4.0000 4.0000 104.0000 0
-3.0815 7.8750 7.8750 78750 7.8750 107.8750

0 <== MLEvalString("i = find(isnan(cfd)); zcfd = cfd; zcfd(i) = 0; scfd=datestr(zcfd.2).")
0 === MLEvalstring{"ccfd = num2cell{scfd,2); ccfd(i) = {N/AT; ccfd = reshape(cefd, size(cfd));")
0 «== MLEvalString("ccfa = cfa; ccfa(i) = 0; alldates = ccfdiend, :):")

8 Finally, execute the function in cell A37 to display a plot of the cash flows

for each portfolio item.

Map Time and Bond Cash Flows

9 When you finish the example, close the figure window.

2-27

2 Solving Problems with the Spreadsheet Link™ EX Software

2-28

Error Messages and
Troubleshooting

o “Worksheet Cell Errors” on page 3-2

e “Microsoft® Excel® Errors” on page 3-5
e “Data Errors” on page 3-8

® “License Errors” on page 3-10

e “Startup Errors” on page 3-11

e “Audible Error Signals” on page 3-12

3 Error Messages and Troubleshooting

Worksheet Cell Errors

You may see these error messages displayed in a worksheet cell.

The first column of the following table contains worksheet cell error messages.
The error messages begin with the number sign (#). Most end with an
exclamation point (!) or with a question mark (?).

Worksheet Cell Error Messages

Worksheet Cell

Error Message Meaning Solution

#COLS>#MAXCOLS! Your MATLAB variable exceeds | This is a limitation in the Excel
the Microsoft Excel limit of product. Try the computation
#MAXCOLS! columns. with a variable containing fewer

columns.

#COMMAND ! The MATLAB software does not | Verify the spelling of the MATLAB
recognize the command in an command. Correct typing errors.
MLEvalString function. The
command may be misspelled.

#DIMENSION! You used MLAppendMatrix and Verify the matrix dimensions and
the dimensions of the appended | the appended data dimensions,
data do not match the dimensions | and correct the argument.
of the matrix you want to append. | For more information, see the

MLAppendMatrix reference page.

#INVALIDNAME! You entered an illegal variable Make sure to use legal MATLAB

name. variable names. MATLAB
variable names must start with a
letter followed by up to 30 letters,
digits, or underscores.

#INVALIDTYPE! You have specified an illegal Make sure to use the supported
MATLAB data type with MATLAB data types.

MLGetVar or MLGetMatrix.

Worksheet Cell Errors

Worksheet Cell Error Messages (Continued)

Worksheet Cell

Error Message Meaning Solution

#MATLAB? You used a Spreadsheet Link Start the Spreadsheet Link EX
EX function and no MATLAB and MATLAB software. See
software session is running. “Startup and Shutdown” on page

1-16.

#NAME? The function name is Be sure the excllink.xla add-in
unrecognized. The excllink.xla | is loaded. See “Add-in Setup” on
add-in is not loaded, or the page 1-8. Check the spelling of
function name may be misspelled. | the function name. Correct typing

errors.

#NONEXIST! You referenced a nonexistent Verify the spelling of the MATLAB
matrix in an MLGetMatrix or matrix. Use the MATLAB whos
MLDeleteMatrix function. The command to display existing
matrix name may be misspelled. | matrices. Correct typing errors.
Also, you receive the #NONEXIST!
error when you attempt to use
matlabfcn to obtain an output.

#ROWS>#MAXROWS ! Your MATLAB variable exceeds | This is a limitation in the Excel
the Excel limit of #MAXROWS!! product. Try the computation
TrOWS. with a variable containing fewer

Tows.
#SYNTAX? You entered a Spreadsheet Verify and correct the function

Link EX function with incorrect
syntax. For example, you did not
specify double quotation marks
(") , or you specified single
quotation marks () instead of
double quotation marks.

syntax.

3-3

3 Error Messages and Troubleshooting

Worksheet Cell Error Messages (Continued)

Worksheet Cell

Error Message Meaning Solution

#VALUE ! An argument is missing from a Supply the correct number of
function, or a function argument | function arguments, of the correct
1is the wrong type. type.

#VALUE! A macro subroutine uses Since the function works correctly,

MLGetMatrix followed by
MatlabRequest, which is correct
standard usage. A macro function

ignore the message. Or, in
this special case, remove
MatlabRequest from the

calls that subroutine, and you subroutine.
execute that function from a
worksheet cell. The function
works correctly, but this message

appears in the cell.

Note When you open an Excel worksheet that contains Spreadsheet Link EX
functions, the Excel software tries to execute the functions from the bottom up
and right to left. Excel may generate cell error messages such as #COMMAND !
or #NONEXIST!. This is expected behavior. Do the following:

1 Ignore the messages.
2 Close MATLAB figure windows.

3 Reexecute the cell functions one at a time in the correct order by pressing
F2, and then Enter.

3-4

Microsoft® Excel® Errors

Microsoft Excel Errors

The Excel software may display one of the following error messages.

Excel Error Messages

Error Message

Cause of Error

Solution

Error in formula

You entered a formula
incorrectly. Common errors
include a space between the
function name and the left
parenthesis; or missing, extra,
or mismatched parentheses.

Note If you use the
Spreadsheet Link EX
software with a non-English
(United States) Windows
desktop environment, certain
syntactical elements may not
work. For more information,
see “Localization Information”
on page 1-34.

Check entry and correct typing
errors.

Can't find project or
library

You tried to execute a
macro and the location of
excllink.xla is incorrect.

Click OK. The References
window opens. Remove

the check from MISSING:
excllink.xla. Find
excllink.xla in its correct
location, select its check box in
the References window, and

click OK.

3-5

3 Error Messages and Troubleshooting

3-6

Excel Error Messages (Continued)

Error Message

Cause of Error

Solution

Run-time error '1004':
Cells method of

Application class failed

You used MLGetMatrix and the
matrix is larger than the space
available in the worksheet.
This error destabilizes the
Spreadsheet Link EX software
session and changes worksheet
calculation mode to manual.

Click OK. Reset worksheet
calculation mode to
automatic, and save your
worksheet as needed. Restart
the Excel, Spreadsheet Link
EX, and MATLAB software
sessions.

MATLAB failed to
check out a license
of Spreadsheet Link
EX or does not have a
valid installation of
Spreadsheet Link EX

You entered an invalid
license passcode or did not
install Spreadsheet Link EX
properly.

Check that you entered

the license passcode properly.
Reinstall the Spreadsheet Link
EX add-on. (See “Installation”
on page 1-5.) If you followed
the installation guidelines,
used a proper passcode

and you are still unable to
start the Spreadsheet Link
EX software, contact your
MathWorks representative.

Datasource: Excel;
prompt for user name
and password

This message appears when an
attempt to connect to the Excel
software from the Database
Toolbox™ software fails.

Make sure that the Excel
spreadsheet referenced by the
data source exists, then retry
the connection.

Microsoft® Excel® Errors

Excel Error Message Boxes

Error Message Box Cause of Error Solution

Microsoft Visual Basic

Run-time error '429';

ActiveX component can't create object

End

Help

This error appears
when you start
the automation
server from the
Excel interface,
and multiple
versions of the
MATLAB software
are installed on
your desktop.

To correct this error, perform the
following:

1 Shut down all MATLAB and Excel
instances.

2 Open a Command Prompt window,
and using cd, change to the bin\win32
subfolder of the MATLAB installation
folder.

3 Type the command:

.\matlab /regserver

4 When the MATLAB session starts, close
it. Using /regserver fixes the registry
entries.

5 Start an Excel session. The Spreadsheet
Link EX add-in now loads properly.

6 Verify that the Spreadsheet Link EX
software 1s working by entering the
following command from the MATLAB
Command Window:

a = 3.14159

7 Enter the following formula in cell A1 of
the open Excel worksheet:

=mlgetmatrix("a","atl")

8 The value 3.14159 appears in cell A1.

3 Error Messages and Troubleshooting

3-8

Data Errors

In this section...

“Matrix Data Errors” on page 3-8

“Errors When Opening Saved Worksheets” on page 3-8

Matrix Data Errors

Data in the MATLAB or Microsoft Excel workspaces may produce the
following errors.

Data Errors

Data Error

Cause

Solution

MATLAB matrix cells
contain zeros (0).

Corresponding Excel worksheet
cells are empty.

Excel worksheet cells must
contain only numeric or string
data.

MATLAB matrix is a
1-by-1 zero matrix.

You used quotation marks
around the data-location
argument in MLPutMatrix or
MLAppendMatrix.

Correct the syntax to remove
quotation marks.

MATLAB matrix is
empty ([1).

You referenced a nonexistent
VBA variable in MLPutVar.

Correct the macro; you may
have typed the variable name
incorrectly.

VBA matrix is empty.

You referenced a nonexistent
MATLAB variable in MLGetVar.

Correct the macro; you may
have typed the variable name
incorrectly.

Errors When Opening Saved Worksheets

This section describes errors that you may encounter when opening saved
worksheets.

® When you open an Excel worksheet that contains Spreadsheet Link EX
functions, the Excel software tries to execute the functions from the bottom

Data Errors

up and right to left. Excel may generate cell error messages such as
#COMMAND ! or #NONEXIST!. This is expected behavior. Do the following:

1 Ignore the messages.
2 Close MATLAB figure windows.

3 Reexecute the cell functions one at a time in the correct order by pressing
F2, and then Enter.

If you save an Excel worksheet containing Spreadsheet Link EX functions,
and then reopen it in an environment where the excllink.xla add-in is in
a different location, you may see the message: This document contains
links: Re-establish links?

To address this issue, do the following:

1 Click No.

Select Edit > Links.

In the Links dialog box, click Change Source.

Hh WO DN

In the Change Links dialog box, select
matlabroot\toolbox\exlink\excllink.xla.

5 Click OK.

The Excel software executes each function as it changes its link. You
may see MATLAB figure windows and hear error beeps as the links
change and functions execute; ignore them.

6 In the Links dialog box, click OK.

The worksheet now connects to the Spreadsheet Link EX add-in.

Or, instead of using the Links menu, you can manually edit the link
location in each affected worksheet cell to show the correct location of
excllink.xla.

3-9

3 Error Messages and Troubleshooting

License Errors

If you are running an automation server of MATLAB that does not have a
Spreadsheet Link EX license associated with it, you will receive an license
error message. To correct this issue, from the MATLAB installation that
includes Spreadsheet Link EX, run the command:

matlab /regserver

3-10

Startup Errors

Startup Errors

If you have enabled MLAutoStart, double-clicking an x1s file in the MATLAB
Current Folder browser and choosing Open Outside MATLAB causes a
Microsoft Excel error to appear. To open the file successfully, click End in
the error window.

To avoid this issue, disable MLAutoStart. Start MATLAB sessions from the
Excel interface by clicking the startmatlab button in the Excel menu bar.

3-11

3 Error Messages and Troubleshooting

Audible Error Signals

You may hear audible errors while passing data to the MATLAB workspace
using MLPutMatrix or MLAppendMatrix. These errors usually indicate that
you have insufficient computer memory to carry out the operation. Close other
applications or clear unnecessary variables from the MATLAB workspace and
try again. If the error signal reoccurs, you probably have insufficient physical
memory in your computer for this operation.

3-12

Functions — Alphabetical
List

matlabfcn

Purpose
Syntax
Description

Tips

Input
Arguments

Examples

Evaluate MATLAB command given Microsoft Excel data
matlabfcn(command,inputs)

matlabfcn(command,inputs) passes the command to the MATLAB
workspace for evaluation, given the function input data. The function
returns a single value or string depending upon the MATLAB output.
The result is returned to the calling worksheet cell. This function is
intended for use as an Excel worksheet function.

e If matlabfcn fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

command
MATLAB command to evaluate.

Embed the command in double quotes, for example, "command".
inputs
Variable length input argument list passed to a MATLAB command.

The argument list may contain a range of worksheet cells that contain
input data.

Compute the Sum of Excel Data and Return the Result to
an Active Cell

Add the data in worksheet cells B1 through B10 returning the sum to
the active worksheet cell:

matlabfcn("sum", B1:B10)
Plot Excel Data Using the MATLAB Plotting Function

Plot the data in worksheet cells B1 through B10, using x as the marker
type:

matlabfcn

matlabfcn("plot", B1:B10, "x")

See Also matlabsub | MLShowMatlabErrors

matlabinit

4-4

Purpose
Syntax

Description

Tips

See Also

Initialize Spreadsheet Link EX software and start MATLAB process
matlabinit

matlabinit Initializes the Spreadsheet Link EX software and

starts MATLAB process. If the Spreadsheet Link EX software has
been initialized and the MATLAB software is running, subsequent
invocations do nothing. Use matlabinit to start Spreadsheet Link EX
and MATLAB sessions manually when you have set MLAutoStart to no.
If you set MLAutoStart to yes, matlabinit executes automatically.

® To run matlabinit from the Microsoft Excel toolbar, click
Tools > Macro. In the Macro Name/Reference box, enter
matlabinit and click Run. Alternatively, you could include this
function in a macro subroutine. You cannot run matlabinit as a
worksheet cell formula or in a macro function.

MLAutoStart | MLOpen

matlabsub

Purpose

Syntax

Description

Tips

Input
Arguments

Evaluate MATLAB command given Microsoft Excel data and designate
output location

matlabsub(command,edat,inputs)

matlabsub(command,edat,inputs) passes the specified command

to the MATLAB workspace for evaluation, given the function input
data. The function returns a single value or string depending upon
the MATLAB output. This function is intended for use as an Excel
worksheet function.

® To return an array of data to the Microsoft Excel Visual Basic for
Applications (VBA) workspace, see MLEvalString and MLGetVar.

e edat must not include the cell that contains the matlabsub function.
In other words, be careful not to overwrite the function itself.

e Ensure that there is enough room in the worksheet to write the
matrix contents. If there is insufficient room, the function generates
a fatal error.

e If matlabsub fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

command
MATLAB command to evaluate.

Enter the MATLAB command in double quotes, for example, "command".

edat
Worksheet location where the function writes the returned data.

edat in quotes directly specifies the location.edat without quotes
specifies a worksheet cell address (or range name) that contains a
reference to the location. In both cases, edat must be a cell address or
a range name.

4-5

matlabsub

Although you can specify a range of output cells, matlabsub does not
support multiple outputs. Instead of returning multiple outputs,
matlabsub returns the first output starting in the first cell from the
specified range, and discards all other outputs.

inputs

Variable length input argument list passed to MATLAB command.

This argument list can contain a range of worksheet cells that contain
input data.

Examples Compute the Sum of Data and Return Result to the Specified
Cell

Sum the data in worksheet cells B1 through B10 returning the output to
cell A1:

matlabsub("sum", "A1", B1:B10)

See Also matlabfcn | MLShowMatlabErrors

MLAppendMatrix

Purpose

Syntax

Description

Tips

Input
Arguments

Create or append MATLAB matrix with data from Microsoft Excel
worksheet

MLAppendMatrix(var_name,mdat)
MLAppendMatrix var_name,mdat
out = MLAppendMatrix(var_name,mdat)

MLAppendMatrix(var_name,mdat) appends data in mdat to MATLAB
matrix var_name or creates var_name if it does not exist. Use this
syntax when working directly in a worksheet.

MLAppendMatrix var_name,mdat appends data in mdat to MATLAB
matrix var_name or creates var_name if it does not exist. Use this
syntax in a VBA macro.

out = MLAppendMatrix(var_name,mdat) lets you catch errors when
executing MLAppendMatrix in a VBA macro. If MLAppendMatrix fails,
then out is a string containing error code. Otherwise, out is 0.

® MLAppendMatrix checks the dimensions of var_name and mdat to
determine how to append mdat to var_name. If the dimensions allow
appending mdat as either new rows or new columns, it appends
mdat to var_name as new rows. If the dimensions do not match, the
function returns an error.

e If mdat is not initially an Excel Range data type and you call the
function from a worksheet, MLAppendMatrix performs the necessary
type coercion.

e If mdat is not an Excel Range data type and you call the function
from within a Microsoft Visual Basic macro, the call fails. The error
message ByRef Argument Type Mismatch appears.

var_name
Name of MATLAB matrix to which to append data.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that

4-7

MLAppendMatrix

contains the matrix name. Do not use the MATLAB variable ans as
var_name.

mdat

Location of data to append to var_name.

mdat must be a worksheet cell address or range name. Do not enclose
it in quotes.

mdat must contain either numeric data or string data. Data types
cannot be combined within the range specified in mdat. Empty mdat
cells become MATLAB matrix elements containing zero if the data is
numeric, and empty strings if the data is a string.

Output out

Arguments 0 if the command succeeded. Otherwise, a string containing error code.

Examples Append Data from a Worksheet Cell Range to a MATLAB
Matrix

In this example, B is a 2-by-2 MATLAB matrix. Append the data in
worksheet cell range A1:A2 to B:

MLAppendMatrix("B", A1:A2)

Al

A2

B is now a 2-by-3 matrix with the data from A1:A2 in the third column.

4-8

MLAppendMatrix

Append Data from a Named Worksheet Cell Range to a
MATLAB Matrix

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B,
and new_data is the name of the cell range A1:B2. Append the data in
cell range A1:B2 to B:

MLAppendMatrix(C1, new_data)

Al

B1

A2

B2

B is now a 4-by-2 matrix with the data from A1:B2 in the last two rows.

See Also wLPutMatrix

4-9

MLAutoStart

Purpose Automatically start MATLAB process

Syntax MLAutoStart(flag)
MLAutoStart flag
out = MLAutoStart(flag)

Description MLAutoStart(flag) sets automatic startup of the Spreadsheet Link EX
and MATLAB software. A change of state takes effect the next time
an Excel session starts. Use this syntax when working directly in a
worksheet.

MLAutoStart flag sets automatic startup of the Spreadsheet Link EX
and MATLAB software. A change of state takes effect the next time an
Excel session starts. Use this syntax in a VBA macro.

out = MLAutoStart(flag) lets you catch errors when executing
MLAutoStart in a VBA macro. If MLAutoStart fails, then out is a string
containing error code. Otherwise, out is 0.

Tips e [f Spreadsheet Link EX and MATLAB are running, then
MLAutoStart("no") does not stop them.

Input flag

Arguments Either "yes" or "no".

Specify "yes" to automatically start the Spreadsheet Link EX and
MATLAB software every time a Microsoft Excel session starts. Specify
"no" to cancel automatic startup of the Spreadsheet Link EX and
MATLAB software.

Default: "yes"

Output out

Arguments 0 if the command succeeded. Otherwise, a string containing error code.

4-10

MLAutoStart

Examples

See Also

Concepts

Cancel Automatic Startup of Spreadsheet Link EX and
MATLAB

Enter this command in a worksheet:

MLAutoStart("no")

Spreadsheet Link EX and MATLAB do not start on subsequent Excel
session invocations.

matlabinit | MLClose | MLOpen

e “Start Spreadsheet Link EX Automatically” on page 1-16

4-11

MLClose

Purpose

Syntax

Description

Tips

Output
Arguments

Examples

See Also

Concepts

4-12

Stop MATLAB process

MLClose()
MLClose
out = MLClose()

MLClose() ends the MATLAB process, deletes all variables from the
MATLAB workspace, and tells the Microsoft Excel software that the
MATLAB software is no longer running. Use this syntax when working
directly in a worksheet.

MLClose ends the MATLAB process, deletes all variables from the
MATLAB workspace, and tells the Microsoft Excel software that the
MATLAB software is no longer running. Use this syntax in a VBA
macro.

out = MLClose() lets you catch errors when executing MLClose in a
VBA macro. If MLClose fails, then out is a string containing error code.
Otherwise, out 1s 0.

¢ If you use MLClose when no MATLAB process is running, nothing
happens.

out

0 if the command succeeded. Otherwise, a string containing error code.

End the MATLAB Session
End the MATLAB session from a worksheet:

MLClose ()

MLAutoStart | MLOpen

® “Stop Spreadsheet Link EX” on page 1-18

MLDeleteMatrix

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

See Also

Delete MATLAB matrix

MLDeleteMatrix(var_name)
MLDeleteMatrix var_name
out = MLDeleteMatrix(var_name)

MLDeleteMatrix(var_name) deletes the named matrix from the
MATLAB workspace. Use this syntax when working directly in a
worksheet.

MLDeleteMatrix var_name deletes the named matrix from the
MATLAB workspace. Use this syntax in a VBA macro.

out = MLDeleteMatrix(var_name) lets you catch errors when
executing MLDeleteMatrix in a VBA macro. If MLDeleteMatrix fails,
then out is a string containing error code. Otherwise, out is 0.

var_name
Name of MATLAB matrix to delete.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name.

out

0 if the command succeeded. Otherwise, a string containing error code.

Delete a Matrix from the MATLAB Workspace
Delete matrix A from the MATLAB workspace:

MLDeleteMatrix ("A")

MLAppendMatrix | MLGetMatrix | MLPutMatrix

4-13

MLEvalString

Purpose Evaluate command in MATLAB

Syntax MLEvalString(command)
MLEvalString command
out = MLEvalString(command)

Description MLEvalString(command) passes a command string to the MATLAB
software for evaluation. Use this syntax when working directly in a
worksheet.

MLEvalString command passes a command string to the MATLAB
software for evaluation. Use this syntax in a VBA macro.

out = MLEvalString(command) lets you catch errors when executing
MLEvalString in a VBA macro. If MLEvalString fails, then out is a
string containing error code or error message. Otherwise, out is 0.

Tips ® The specified action alters only the MATLAB workspace. It has no
effect on the Microsoft Excel workspace.

e [fMLEvalString fails, then by default you get a standard Spreadsheet
Link EX error, such as #COMMAND. To return MATLAB error strings,
use MLShowMatlabErrors.

Input command
Arguments MATLAB command to evaluate.

command in quotes directly specifies the command. command without
quotes specifies a worksheet cell address (or range name) that contains
the command.

Output out

Arguments 0 if the command succeeded. Otherwise, a string containing error code

or error message. To return MATLAB error messages instead of error
code, use MLShowMatlabErrors.

4-14

MLEvalString

Examples Evaluate a MATLAB Command from an Excel Worksheet

Divide the MATLAB variable b by 2, and then plot it:
MLEvalString("b = b/2;plot(b)")

This command only modifies the MATLAB variable b. To update data
in the Excel worksheet, use MLGetMatrix.

See Also MLGetMatrix | MLShowMatlabErrors

4-15

MLGetFigure

Purpose Import current MATLAB figure into Microsoft Excel spreadsheet

Syntax MLGetFigure (width,height)
MLGetFigure width, height
out = MLGetFigure(width,height)

Description MLGetFigure(width,height) import the current MATLAB figure into
an Excel worksheet, where the top-left corner of the figure is the current
spreadsheet cell. Use this syntax when working directly in a worksheet.

MLGetFigure width, height import the current MATLAB figure into
an Excel worksheet, where the top-left corner of the figure is the current
spreadsheet cell. Use this syntax in a VBA macro.

out = MLGetFigure(width,height) lets you catch errors when
executing MLGetFigure in a VBA macro. If MLGetFigure fails, then out
is a string containing error code. Otherwise, out is 0.

Tips ¢ [f you use Microsoft Excel 2007 or 2010, MLGetFigure scales the
imported figure by the product of width and height along both
dimensions.

¢ If worksheet calculation mode is automatic, MLGetFigure executes
when you enter the formula in a cell. If worksheet calculation mode
1s manual, enter the MLGetFigure function in a cell, then press F9
to execute 1it. Remember that pressing F9 in this situation can also
reexecute other worksheet functions and generate unpredictable
results.

¢ If you use MLGetFigure in a macro subroutine, enter MatlabRequest
on the line after the MLGetFigure. MatlabRequest initializes internal
Spreadsheet Link EX variables and enables MLGetFigure to function
in a subroutine. Do not include MatlabRequest in a macro function
unless the function is called from a subroutine.

Input width

Arguments Width (in normalized units) of the MATLAB figure when imported into
an Excel worksheet.

4-16

MLGetFigure

Output
Arguments

Examples

See Also

height

Height (in normalized units) of the MATLAB figure when imported
into an Excel worksheet.

out

0 if the command succeeded. Otherwise, a string containing error code.

Import a MATLAB Figure into an Excel Worksheet

Import the current MATLAB figure into an Excel worksheet. Specify the
width and the height of the figure to be half those of the original figure:

MLGetFigure(.5,.5)
Note that if you use Microsoft Excel 2007 or 2010, the width and the
height of the imported figure will be a quarter of those of the original

figure.

MLGetMatrix | MLGetVar

4-17

MLGetMatrix

Purpose Write contents of MATLAB matrix to Microsoft Excel worksheet

Syntax MLGetMatrix(var_name,edat)
MLGetMatrix var_name, edat
out = MLGetMatrix(var_name,edat)

Description MLGetMatrix (var_name,edat) writes the contents of MATLAB matrix
var_name in the Excel worksheet, beginning in the upper-left cell
specified by edat. Use this syntax when working directly in a worksheet.

MLGetMatrix var_name, edat writes the contents of MATLAB matrix
var_name in the Excel worksheet, beginning in the upper-left cell
specified by edat. Use this syntax in a VBA macro.

out = MLGetMatrix(var_name,edat) lets you catch errors when
executing MLGetMatrix in a VBA macro. If MLGetMatrix fails, then out
is a string containing error code. Otherwise, out is 0.

Tips e [If data exists in the specified worksheet cells, it is overwritten.

e If the dimensions of the MATLAB matrix are larger than that of the
specified cells, the data overflows into additional rows and columns.

e edat must not include the cell that contains the MLGetMatrix
function. In other words, be careful not to overwrite the function
itself. Also make sure there is enough room in the worksheet to
write the matrix contents. If there is insufficient room, the function
generates a fatal error.

® MLGetMatrix function does not automatically adjust cell addresses.
If edat is an explicit cell address, edit it to correct the address when
you do either of the following:

= Insert or delete rows or columns.
= Move or copy the function to another cell.

e If worksheet calculation mode is automatic, MLGetMatrix executes
when you enter the formula in a cell. If worksheet calculation mode
1s manual, enter the MLGetMatrix function in a cell, and then press

4-18

MLGetMatrix

Input
Arguments

Output
Arguments

Examples

F9 to execute it. However, pressing F9 in this situation may also
reexecute other worksheet functions and generate unpredictable
results.

¢ [f you use MLGetMatrix in a macro subroutine, enter MatlabRequest
on the line after the MLGetMatrix. MatlabRequest initializes internal
Spreadsheet Link EX variables and enables MLGetMatrix to function
in a subroutine. Do not include MatlabRequest in a macro function
unless the function is called from a subroutine.

var_name

Name of MATLAB matrix to access.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name. Do not use the MATLAB variable ans as
var_name.

edat
Worksheet location where the function writes the contents of var_name.

edat in quotes directly specifies the location. edat without quotes
specifies a worksheet cell address (or range name) that contains a
reference to the location. In both cases, edat must be a cell address or
a range name.

out
0 if the command succeeded. Otherwise, a string containing error code.
Specify the Matrix Name and Location Directly

Write the contents of the MATLAB matrix bonds starting in cell C10 of
Sheet2. If bonds is a 4-by-3 matrix, fill cells C10..E13 with data:

MLGetMatrix("bonds", "Sheet2!C10")

4-19

MLGetMatrix

4-20

Specify the Matrix Name and Location Indirectly

Access the MATLAB matrix named by the string in worksheet cell
B12. Write the contents of the matrix to the worksheet starting at the
location named by the string in worksheet cell B13:

MLGetMatrix(B12, B13)

Use MLGetMatrix in a VBA Macro

Write the contents of MATLAB matrix A to the worksheet, starting at
the cell named by RangeA:

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest

End Sub

Use the Address Property of the Range Object to Specify
Location

In a macro, use the Address property of the range object returned by
the VBA Cells function to specify where to write the data:

Sub Get_Variable()

MLGetMatrix "X", Cells(3, 2).Address
MatlabRequest

End Sub

Catch Errors in a VBA Macro

Use this function to get the variable A from MATLAB and to test if
the command succeeded:

Sub myfun()
Dim out As Variant

out = MLGetMatrix("A", "A1")

MLGetMatrix

If out <> 0 Then
MsgBox out
End If
MatlabRequest
End Sub

If MLGetMatrix fails, myfun displays a message box with the error code.

See Also MLAppendMatrix | MLPutMatrix

4-21

MLGetVar

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

4-22

Write contents of MATLAB matrix in Microsoft Excel VBA variable

MLGetVar ML_var_name, VBA_var_name
out = MLGetVar ML_var_name, VBA_var_name

MLGetVar ML_var_name, VBA_var_name writes the contents of
MATLAB matrix ML_var_name in the Excel Visual Basic for
Applications (VBA) variable VBA var_name. Creates VBA var_name if
it does not exist. Replaces existing data in VBA_var_name.

out = MLGetVar ML_var_name, VBA_ var_name lets you catch errors
when executing MLGetVar. If MLGetVar fails, then out is a string
containing error code. Otherwise, out is 0.

ML_var_name
Name of MATLAB matrix to access.

ML_var_name in quotes directly specifies the matrix name. ML_var_name
without quotes specifies a VBA variable that contains the matrix name
as a string. Do not use the MATLAB variable ans as ML_var_name. If
defined, ML_var_name must be of type VARIANT. Any other type will give
a "TYPE MISMATCH" error.

VBA_var_name

Name of VBA variable where the function writes the contents of
ML_var_name.

Use VBA var_name without quotes.

out

0 if the command succeeded. Otherwise, a string containing error code.

Write the Contents of a MATLAB Matrix into a VBA Variable

Write the contents of the MATLAB matrix J into the VBA variable
DatadJ:

MLGetVar
|

Sub Fetch()
MLGetVar "J", Datad
End Sub

See Also wLpPutvar

4-23

MLMissingDataAsNaN

Purpose

Syntax

Description

Tips

Input
Arguments

Output
Arguments

Examples

4-24

Set empty cells to NaN or 0

MLMissingDataAsNaN(flag)
MLMissingDataAsNaN flag
out = MLMissingDataAsNaN(flag)

MLMissingDataAsNaN(flag) sets empty cells to NaN or 0. When the
Spreadsheet Link EX software is installed, the default is "no", so empty
cells are handled as 0s. If you change the value of MLUseCellArray to
"yes", the change remains in effect the next time a Microsoft Excel
session starts. Use this syntax when working directly in a worksheet.

MLMissingDataAsNaN flag sets empty cells to NaN or 0. Use this syntax
in a VBA macro.

out = MLMissingDataAsNaN(flag) lets you catch errors

when executing MLMissingDataAsNaN in a VBA macro. If
MLMissingDataAsNaN fails, then out is a string containing error code.
Otherwise, out 1s 0.

e A string in an Excel range always forces cell array output and empty
cells as NaNs.

flag
Either "yes" or "no".

Specify "yes" to set empty cells to use NaNs. Specify "no" to set empty
cells to use Os.

Default: "no"

out

0 if the command succeeded. Otherwise, a string containing error code.

Set Empty Cells to Use Os

Cancel the use of the value NaN for empty cells:

MLMissingDataAsNaN
|

MLMissingDataAsNaN("no")

See Also wLPutMatrix

4-25

MLOpen

Purpose

Syntax

Description

Tips

Output
Arguments

Examples

See Also

4-26

Start MATLAB process

MLOpen ()
MLOpen
out = MLOpen()

MLOpen () starts MATLAB process. Use MLOpen to restart the MATLAB
session after you have stopped it with MLClose in a given Microsoft
Excel session. Use this syntax when working directly in a worksheet.

MLOpen starts MATLAB process. Use MLOpen to restart the MATLAB
session after you have stopped it with MLClose in a given Microsoft
Excel session. Use this syntax in a VBA macro.

out = MLOpen() lets you catch errors when executing MLOpen in a
VBA macro. If MLOpen fails, then out is a string containing error code.
Otherwise, out 1s 0.

e If a MATLAB process has already started, subsequent calls to MLOpen
do nothing.

e To start a MATLAB session and initialize the Spreadsheet Link EX
software, use matlabinit rather than MLOpen.

out

0 if the command succeeded. Otherwise, a string containing error code.

Start a MATLAB Session
Start a MATLAB session from a worksheet:

MLOpen ()

matlabinit | MLClose

MLPutMatrix

Purpose

Syntax

Description

Tips

Create or overwrite MATLAB matrix with data from Microsoft Excel
worksheet

MLPutMatrix(var_name, mdat)
MLPutMatrix var_name, mdat
out = MLPutMatrix(var_name,mdat)

MLPutMatrix(var_name, mdat) creates or overwrites matrix var_name
in MATLAB workspace with specified data in mdat. Creates var_name
if it does not exist. Use this syntax when working directly in a worksheet.

MLPutMatrix var_name, mdat creates or overwrites matrix var_name
in MATLAB workspace with specified data in mdat. Use this syntax
in a VBA macro.

out = MLPutMatrix(var_name,mdat) lets you catch errors when
executing MLPutMatrix in a VBA macro. If MLPutMatrix fails, then out
is a string containing error code. Otherwise, out is 0.

e If var_name exists, this function replaces the contents with mdat.

* Empty numeric data cells within the range of mdat become numeric
zeros within the MATLAB matrix identified by var_name.

e If any element of mdat contains string data, mdat is exported as
a MATLAB cell array. Empty string elements within the range of
mdatmdat become NaNs within the MATLAB cell array.

® When using MLPutMatrix in a subroutine, indicate the source of the
worksheet data using the Microsoft Excel macro Range. For example:

Sub test()
MLPutMatrix "a", Range("A1:A3")
End Sub

If you have a named range in your worksheet, you can specify the
name instead of the range; for example:

Sub test()

MLPutMatrix

MLPutMatrix "a", Range("temp")
End Sub

where temp is a named range in your worksheet.

Input var_name
Arguments Name of MATLAB matrix to create or overwrite.

var_name in quotes directly specifies the matrix name. var_name
without quotes specifies a worksheet cell address (or range name) that
contains the matrix name.

mdat
Location of data to copy into var_name.
mdat must be a worksheet cell address or range name. Do not enclose

it in quotes.

Output out

Arguments 0 if the command succeeded. Otherwise, a string containing error code.

Examples Create or Overwrite a Matrix in the MATLAB Workspace

Create or overwrite matrix A in the MATLAB workspace with the data
in the worksheet range A1:C3:

MLPutMatrix "A", Range("A1:C3")

Import Data from a Microsoft Excel Worksheet to the
MATLAB Workspace Using the putmatrix Toolbar Button

1 In the Excel worksheet, select the columns and/or rows you want to
export to the MATLAB workspace.

4-28

MLPutMatrix

FAIE™ B e |=

Home Insert Page Layout Formulas Data

startmatlab |putmatrix getmatrix evalstring getfigure wizard preferences

Custom Toolbars

3 1 2 3
4 4 5 B

| |
3

2 Click the putmatrix button on the Spreadsheet Link EX toolbar.
A window appears that prompts you to specify the name of the
MATLAB variable in which you want to store your data.

Microsoft Excel @

Variable name in MATLAB
Cancel

-,

3 Enter newmatrix for the MATLAB variable name.
4 Click OK.

Now you can manipulate newmatrix in the MATLAB Command
Window.

newmatrix
newmatrix =

4-29

MLPutMatrix

1 2 3
4 5 6
See Also MLAppendMatrix | MLGetMatrix

4-30

MLPutVar

Purpose
Syntax

Description

Tips

Input
Arguments

Create or overwrite MATLAB matrix with data from Microsoft Excel
VBA variable

MLPutVar ML_var_name, VBA_var_name
out = MLPutVar ML_var_name, VBA_var_name

MLPutVar ML_var_name, VBA_var_name creates or overwrites matrix
ML_var_name in MATLAB workspace with data in VBA _var_name.
Creates ML_var_name if it does not exist. If ML_var_name exists, this
function replaces the contents with data from VBA_var_name.

out = MLPutVar ML_var_name, VBA_ var_name lets you catch errors
when executing MLPutVar. If MLPutVar fails, then out is a string
containing error code. Otherwise, out is 0.

e Use MLPutVar only in a macro subroutine, not in a macro function or
in a subroutine called by a function.

* Empty numeric data cells within VBA_var_name become numeric
zeros within the MATLAB matrix identified by ML_var_name.

¢ If any element of VBA_var_name contains string data,
VBA_var_name is exported as a MATLAB cell array. Empty string
elements within VBA_var_name become NaNs within the MATLAB
cell array.

ML_var_name
Name of MATLAB matrix to create or overwrite.

ML_var_name in quotes directly specifies the matrix name. ML_var_name
without quotes specifies a VBA variable that contains the matrix name
as a string.

VBA var_name

Name of VBA variable whose contents are written to ML_var_name.

Use VBA var_name without quotes.

4-31

MLPutVar

Output out

Arguments 0 if the command succeeded. Otherwise, a string containing error code.

Examples Create a MATLAB Matrix Using Data Stored in a VBA Variable

Create (or overwrite) the MATLAB matrix K with the data in the VBA
variable DatakK:

Sub Put()
MLPutVar "K", Datak
End Sub

See Also wLGetvar

4-32

MLShowMatlabErrors

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

Return standard Spreadsheet Link EX errors or full MATLAB errors
using MLEvalString

MLShowMatlabErrors(flag)
MLShowMatlabErrors flag
out = MLShowMatlabErrors(flag)

MLShowMatlabErrors(flag) sets the Spreadsheet Link EX error
display mode when executing MATLAB commands using MLEvalString.
Use this syntax when working directly in a worksheet.

MLShowMatlabErrors flag sets the Spreadsheet Link EX error display
mode when executing MATLAB commands using MLEvalString. Use
this syntax in a VBA macro.

out = MLShowMatlabErrors(flag) lets you catch errors

when executing MLShowMatlabErrors in a VBA macro. If
MLShowMatlabErrors fails, then out is a string containing error code.
Otherwise, out 1s 0.

flag

Either "yes" or "no".

Specify "yes" to display the full MATLAB error string upon
MLEvalString failure. Specify "no" to display the standard Spreadsheet
Link EX errors upon MLEvalString failure.

Default: "no"

out

0 if the command succeeded. Otherwise, a string containing error code.

Switch to Displaying Spreadsheet Link EX Errors

Switch to displaying standard Spreadsheet Link EX errors, such as
#COMMAND, on MLEvalString failures:

4-33

MLShowMatlabErrors

MLShowMatlabErrors("no")
Switch to Displaying MATLAB Errors

Switch to displaying MATLAB error strings, such as ??? Undefined
function or variable 'foo', on MLEvalString failures:

MLShowMatlabErrors("yes")

See Also LEvalString

4-34

MLStartDir

Purpose

Syntax

Description

Tips

Input
Arguments

Output
Arguments

Examples

Specify MATLAB current working folder after startup

MLStartDir(path)
MLStartDir path
out = MLStartDir(path)

MLStartDir(path) sets the MATLAB working folder after startup. Use
this syntax when working directly in a worksheet.

MLStartDir path sets the MATLAB working folder after startup. Use
this syntax in a VBA macro.

out = MLStartDir(path) lets you catch errors when executing
MLStartDir in a VBA macro. If MLStartDir fails, then out is a string
containing error code. Otherwise, out is 0.

® This function does not work like the standard Microsoft Windows
Start In setting, because it does not automatically run startup.m or
matlabrc.m in the specified folder.

® The working folder changes only if you run MATLAB after you run
this function. Running this function while MATLAB is running
does not change the working folder for the current session. In this
case, MATLAB uses the specified folder as the working folder when
it is restarted.

path
Path to the new MATLAB working folder after startup.

out

0 if the command succeeded. Otherwise, a string containing error code.

Specify MATLAB Working Folder
Set the MATLAB working folder to d: \work after startup:

MLStartDir (d:\work)

4-35

MLStartDir

Specify MATLAB Working Folder That Includes Spaces

If your folder path includes a space, embed the path in single quotation
marks within double quotation marks.

Set the MATLAB working folder to d:\my work:

MLStartDir ('d:\my work')

See Also MLAutoStart

4-36

MLUseCellArray

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

Toggle MLPutMatrix to use MATLAB cell arrays

MLUseCellArray(flag)
MLUseCellArray flag
out = MLUseCellArray(flag)

MLUseCellArray(flag) specifies whether MLPutMatrix must use cell
arrays for transfer of data (for example, dates). When the Spreadsheet
Link EX software is installed, the default is "no". If you change the
value of MLUseCellArray to "yes", the change remains in effect the
next time a Microsoft Excel session starts. Use this syntax when
working directly in a worksheet.

MLUseCellArray flag specifies whether MLPutMatrix must use cell
arrays for transfer of data. Use this syntax in a VBA macro.

out = MLUseCellArray(flag) lets you catch errors when executing
MLUseCellArray in a VBA macro. If MLUseCellArray fails, then out is
a string containing error code. Otherwise, out is 0.

flag
Either "yes" or "no".
Specify "yes" to automatically uses cell arrays for transfer of data
structures. Specify "no" to stop using cell arrays for transfer of data
structures.

Default: "no"
out

0 if the command succeeded. Otherwise, a string containing error code.

Stop Using Cell Arrays When Transferring Data Structures
Cancel automatic use of cell arrays for easy transfer of data:

MLUseCellArray("no")

4-37

MLUseCellArray

See Also wLPutMatrix

4-38

MLUseFullDesktop

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

See Also

Specify whether to use full MATLAB desktop or MATLAB Command
Window

MLUseFullDesktop(flag)
MLUseFullDesktop flag
out = MLUseFullDesktop(flag)

MLUseFullDesktop(flag) sets the MATLAB session to start with the
full desktop or Command Window only. Use this syntax when working
directly in a worksheet.

MLUseFullDesktop flag sets the MATLAB session to start with the
full desktop or Command Window only. Use this syntax in a VBA macro.

out = MLUseFullDesktop(flag) lets you catch errors when executing
MLUseFullDesktop in a VBA macro. If MLUseFullDesktop fails, then
out is a string containing error code. Otherwise, out is 0.

flag
Either "yes" or "no".

Specify "yes" to start full MATLAB desktop. Specify "no" to start the
MATLAB Command Window only.

Default: "yes"

out

0 if the command succeeded. Otherwise, a string containing error code.

Start Only the MATLAB Command Window
Set the MATLAB session to start with the command window only:

MLUseFullDesktop("no")

matlabinit | MLClose | MLOpen

4-39

MLUseFullDesktop

4-40

A

add-in, Spreadsheet Link EX 3-3
Add-In, Spreadsheet Link EX 1-8 to 1-9
audible error signals 3-12

/automation option 1-16

beeps 3-12
binomial tree 2-15

C

calculation mode 3-6

cash flow example 2-24

COLS error 3-2

COMMAND error 3-2

computer memory errors 3-12
curve fitting example 2-2

D

data
matrix data errors 3-8
data errors 3-8
data interpolation example 2-11
data types 1-3
data-location argument 3-8 3-12
date numbers 1-33
date system 1-33
dates 1-33
DIMENSION error 3-2
double quotation marks 3-3

efficient frontier example 2-19
empty matrix 3-8
errors
Excel error message boxes 3-5
troubleshooting 3-1

worksheet cell errors 3-2
examples

cash flow 2-24

efficient frontier 2-19

interpolating data 2-11

regression and curve fitting 2-2

stock option 2-15
excllink.xla 1-5
excllink.xla add-in 3-5
exlink.ini file 1-5
Ex1liSamp.x1s file

location 1-5

purpose 2-1

F
file initialization 1-5
Function Wizard for the Spreadsheet Link EX
Software 1-24
functions
about 1-19
arguments
working with 1-22
MATLAB Function Wizard for the
Spreadsheet Link EX Software 1-24
Spreadsheet Link EX
types of 1-19
Spreadsheet Link EX versus Microsoft
Excel 1-19
using in macros 1-29

initialization file 1-5

interpolating data 2-11
INVALIDNAME error 3-2
INVALIDTYPE error 3-2

K
Kernel32.d1ll 1-5

Index-1

Index

L about 1-19

license error 3-10 Spreadsheet Link EX software

license passcode 3-6 configuring

localization 1-34 for Excel 2003 and earlier versions 1-8

for Excel 2007 1-9
installing 1-5

M overview 1-3
macros starting 1-16
creating 1-29 stopping 1-5 1-18
MATLAB error 3-3 using 2-1
MATLAB Function Wizard for the Spreadsheet spreadsheets 1-20
Link EX Software 1-24 using 1-20
matrix dimensions 3-2 startup error signals 3-11
stock option pricing example 2-15
N SYNTAX error 3-3
system
NAME error 3-3 date 1-33
NONEXIST error 3-3 system path
nonexistent variable 3-8 files on 1-5

non—U.S. users
information for 1-34

T
P troubleshooting 3-1
passcode
license 3-6 v
Preferences VALUE error 3-4
setting 1-14
w
R worksheet formulas 1-20
regression and curve fitting 2-2 worksheets 1-20
ROWS error 3-3 errors when opening 3-8
using 1-20
S
signals error 3-12 y 4
single quotation marks 3-3 zero matrix 3-8
spreadsheet formulas 1-20 zero matrix cells 3-8

Spreadsheet Link EX functions

Index-2

	toc
	Getting Started
	Product Description
	Key Features

	Microsoft Excel and MATLAB Interaction
	Installation
	Product Installation
	Files and Folders Created by the Installation
	Modify Your System Path
	After You Upgrade the Spreadsheet Link EX Software

	Add-in Setup
	Configure Microsoft Excel 2003 and Earlier Versions
	Configure Microsoft Excel 2007 and 2010
	Work with the Microsoft Visual Basic Editor

	Customization
	Set Spreadsheet Link EX Preferences
	Use Particular Versions of MATLAB

	Startup and Shutdown
	Start Spreadsheet Link EX Automatically
	Start Spreadsheet Link EX Manually
	Connect to Already Running MATLAB Session
	Stop Spreadsheet Link EX

	MATLAB Functions in Microsoft Excel
	Spreadsheet Link EX and Microsoft Excel Functions
	Types of Spreadsheet Link EX Functions
	Use Worksheets
	Entering Functions into Worksheet Cells
	Automatic Calculation Mode Vs. Manual Calculation Mode

	Work with Arguments
	Variable-Name Arguments
	Data-Location Arguments

	Use MATLAB Function Wizard
	Using the Function Wizard to Access Custom MATLAB Functions

	Use Spreadsheet Link EX Functions in Macros
	About the Examples
	Sending MATLAB Data to an Excel Worksheet and Displaying the Res
	Importing and Exporting Data Between the Microsoft Excel Interfa

	Work with Dates
	Localization Information

	Solving Problems with the Spreadsheet Link EX Software
	Model Data Using Regression and Curve Fitting
	Using Worksheets
	Using Macros

	Interpolate Data
	Price Stock Options Using the Binomial Model
	Compute Efficient Frontier of Financial Portfolios
	Map Time and Bond Cash Flows

	Error Messages and Troubleshooting
	Worksheet Cell Errors
	Microsoft Excel Errors
	Data Errors
	Matrix Data Errors
	Errors When Opening Saved Worksheets

	License Errors
	Startup Errors
	Audible Error Signals

	Functions — Alphabetical List
	Index

	tables
	Worksheet Cell Error Messages
	Excel Error Messages
	Excel Error Message Boxes
	Data Errors

